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Abstract

Model-Driven Engineering (MDE) is an established paradigm in software engineering.

It promotes the use of models as primary development artifacts, thereby raising the

level of abstraction and allowing stakeholders to focus on those parts of a system

that seem most relevant to them without being overwhelmed by its high overall

complexity. However, using models as abstractions of real-world systems does impose

the necessity of using defined syntax and semantic. In order to achieve positive

effects through the application of MDE, it is crucial that models do comply to those

notations and are semantically valid. Unfortunately, ensuring that only valid models

are built is a non-trivial task. Although various approaches have been developed

to address this issue, those approaches are often limited to specific scenarios or

restrict the model designer or the modeling process significantly. In this thesis, we

investigate an approach that proposes the incremental generation and management

of model syntactic and semantic constraints based on existing design models. We

show how our approach can provide assistance to the designer for reaching a valid

model without restraining the designer or the development process being used. The

approach is applied to the domains of model-transformation, metamodeling, and

software product lines to demonstrates both its feasibility and applicability. Case

studies with industrial-size models suggest that the approach scales and that it is

suitable for providing instant feedback about a model’s validity.
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Kurzfassung

Model-Driven Engineering (MDE) ist ein etabliertes Paradigma in der Softwareen-

twicklung, welches die Verwendung von Modellen als primäre Entwicklungsartifakte

fördert. Die Verwendung von Modellen erhöht dabei die Abstraktionsebene und

erlaubt Beteiligten, sich auf die für sie relevanten Teile eines Systems zu konzentri-

eren, ohne von der Komplexität des Gesamtsystems überfordert zu werden. Dies

erfordert auch die Verwendung von definierten Notationen und Semantiken. Um

MDE tatsächlich gewinnbringend einsetzen zu können, müssen Modelle den No-

tationen entsprechen und semantisch korrekt sein. Dies sicherzustellen ist jedoch

eine hoch komplexe Aufgabe. Es gibt zwar zahlreiche Ansätze um dieses Prob-

lem zu lösen, jedoch sind diese Ansätze oft auf bestimmte Szenarien limitiert oder

schränken den Modellierer oder auch den Modellierungsprozess signifikant ein. In

dieser Arbeit erforschen wir einen neuen Ansatz, welcher inkrementelles Erzeugen

und Managen von Modell-Restriktionen auf Basis existierender Modelle propagiert.

Wir zeigen, dass der Ansatz dabei helfen kann, gültige Modelle zu erzeugen, ohne

dabei die Freiheit des Modellierers oder des Modellierungsprozesses einzuschränken.

Um die Machbarkeit und die breite Anwendbarkeit des Ansatzes zu zeigen, wenden

wir ihn in den Bereichen Modell-Transformation, Metamodellierung und Software-

Produktlinien an. Fallstudien mit praxisnahen Modellen zeigen, dass der Ansatz

skaliert und Modellierern augenblicklich Rückmeldung über die Validität eines Mod-

ells gibt.
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1

Introduction

Over the last decades, the concept of Model-Driven Engineering (MDE) [1] has

emerged to become a principle commonly used in software engineering industry and

also a very active field of research [2]. MDE encourages stakeholders to focus on

abstract representations (i.e., models) of real-word systems and the individual en-

tities they consist of instead of dealing with complex and very specific details of

those entitites [3]. The developed models are then used as the primary source for

constructing the desired systems (or at least parts thereof) automatically, eliminat-

ing various repetitive and time consuming tasks for developers. Therefore, applying

MDE concepts can increase the efficiency of the development process [4, 5].

In fact, it has been shown that all major phases that occur in typical software

processes are supported by MDE [6] and that MDE can lead to faster outputs that

are of higher quality [4]. During requirements engineering, for instance, require-

ments models may be used to efficiently capture the functional and non-functional

requirements stakeholders may want the desired product to provide. During the ini-

tial development phase, software architects build architecture models that define the

overall structure of the software system and the patterns of communication within
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that system. In later phases, designers create design models that describe in much

more detail the different elements from which the system can be composed of, the

states of operations the system may operate in, and the interactions that occur within

the system. Even those detailed models are still abstractions that are typically inde-

pendent of programming languages and do not contain implementation details. For

the testing stage, various approaches for performing tests on model representations

of systems have been proposed. Finally, the deployment of a software system can

also be modeled and then executed automatically.

1.1 Consistency Issues

As mentioned above, models are abstraction of real-world systems. In development

projects, the used models most of the time are abstractions of not yet existing real-

world systems. Thus, those models cannot be derived automatically (e.g., through

reverse engineering [7]), but they have to be defined in a manual process, using

people’s knowledge and ideas. Furthermore, working with models and employing

them as a means for more efficient communication [5] also requires the active use of

abstraction concepts that allow for a simplified and straightforward representation of

complex real-world scenarios – it requires a well-defined notation and also a common

understanding of how that notation should be interpreted [8] – called a metamodel

or language [9, 10]. Note that the interpretation of certain model elements (i.e.,

the model semantics) may depend on both the model’s metamodel and the specific

domain of the development project. Thus, the meaning of a model element often

does not only depend on which kind of model element it is (e.g., its shape) and

how such an element should be interpreted according to the metamodel, but it also

depends on the domain in which the development project takes place – it is quite

common in development projects to use defined languages for modeling but apply

different rules for their interpretation. Depending on the tools employed for building
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models – those can range from pen and paper to highly sophisticated software tools

or even modeling environments that make use of augmented reality concepts (e.g.,

[11]) – modelers may find themselves in situations where they do not encounter any

restrictions regarding the model they build. For example, a modeler is free to use

any notation imaginable when using pen and paper. When using a sophisticated

modeling tool, on the other hand, he or she may be forced to use a small set of

available modeling elements that comply to a defined notation.

In both cases, it is of the highest importance that the created models do follow

defined notations. If they do not, it becomes impossible to share models for the sake

of efficient communication as there is no common understanding and each individ-

ual may interpret certain – undefined – shapes differently. However, correct use of

notations is not the only issue when creating models manually. Since models are

abstractions of complex real-world systems, it is necessary to model different aspects

of those systems in different views. This allows individual stakeholders to focus on

specific parts of the system they are interested in. For instance, customers often are

interested in internal data flows, while implementers of core business logic should

not be bothered with user-interface design. Still, there is a connection. Both the

interface designer and the programmer working on business logic will work with the

same method that should be called in case of a certain event. If a designer now, for

any reason, changes the name of that method, both the interface designer and the

programmer will have to adapt their respective parts (or views) of the model they

are working with. Otherwise, the model would still be correct with respect to the

use of notation, but there would be inconsistencies between separate parts of the

model (i.e., the model would be semantically invalid). Although this might not be

an issue when only using models as a means of communication, such inconsistencies

may prevent a model from being used for deriving (parts of) the modeled system’s

implementation. Clearly, the division of a single system into multiple views in MDE

3



may increases complexity instead of actually reducing it [3].

To ensure that a model complies to a defined notation and is semantically valid,

model constraints are required to precisely define conditions that must hold in a

given model to be compliant. Note that some model constraints may be enforced

on all models (e.g., syntactical constraints that check the correct use of notation)

or only on some models that belong to a certain domain (e.g., domain-specific se-

mantic constraints). Moreover, depending on the used modeling technology, some

constraints may be enforced implicitly. For instance, a modeling tool might allow

the user to draw only defined shapes. Thus, no model created with the tool will have

ill-formed shapes. This is typically the case in modeling tools as they implement a

fixed metamodel and only allow for instantiation of defined metamodel classes. Other

constraints may be enforced explicitly. For example, based on the implemented meta-

model’s semantics, a popup notification may appear when a modeler tries to assign

identical identifiers to different model elements and the modeler is forced to select a

different value. Either way, the presence of a constraint – in any form – is mandatory.

However, even sophisticated modeling tools (e.g., [12, 13]) often only enforce a small

set of generic constraints that are not sufficient to ensure that constructed models

are actually valid in a specific modeling context (i.e., a specific project) [14]. Note

that the modeling context does not only involve the domain of the modeled system,

but also the environment in which the modeling takes place (e.g., the company and

its development process). This specific context requires additional syntactical and

semantical constraints that are tailored to it. Indeed, this cannot be foreseen by

tool authors and thus they cannot provide necessary constraints. Therefore, such

additional, project-specific constraints usually have to be written manually. This

makes them prone to errors and requires much effort to maintain when evolution

takes place and models or also the modeling context are subject to change.
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1.2 Thesis Overview

In this thesis, we investigate a novel approach that generates and manages constraints

automatically based on existing design models. In particular, the approach ensures

that at all times – even after the evolution of involved models – the desired set

of model constraints is used for consistency checking. The rules defining which

constraints are required and when they have to be generated are project-specific and

can be tailored to different domains freely. Based on this maintenance of design

constraints, inconsistencies can be detected reliably and further user-guidance for

repairing them and building a consistent model can be provided.

To validate this approach, several questions must be answered. First, we need

to demonstrate that automatic generation and management of constraints using in-

formation from existing models is feasible. That is, we have to investigate whether

common models do provide enough information for generating constraints that en-

sure syntactical and semantical correctness of a model. Second, it must be shown

that both the generation and the adaptation of constraints can be done incrementally

and efficiently during modeling without interrupting users of modeling tools. Since

constraints only provide information once they have been validated, this also includes

the efficient chaining of constraint management and constraint validation. Third, we

have to demonstrate that constraint generation and the automation of constraint

management does address important issues in MDE. Finally, in order to validate the

general applicability of the approach, it must also be investigated whether it can be

implemented in different ways that meet the specific needs of different domains.

1.2.1 Research Questions

Based on those goals, we define the four specific research questions:

• RQ1: Is it feasible to generate and manage relevant constraints automatically?
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• RQ2: Can constraint management be done incrementally and efficiently?

• RQ3: Is constraint management capable of addressing important MDE issues?

• RQ4: Is the approach generally applicable and can it be tailored to different

domains?

1.2.2 Organization

The remainder of this thesis is organized as follows. In Chapter 2 (based on [15]

and [16]), we discuss the core concepts required for generating constraints from mod-

els using a typical model-driven engineering example. Additionally, we show how

ambiguity and missing information may cause issues when generating models auto-

matically or using consistency preserving approaches to handle model evolution. It

is demonstrated how our approach enables a different, constraint-driven and user-

centric way to reach not only consistent but actually intended models when it is not

possible to obtain those models automatically.

In Chapter 3 (based on [17]), the principles developed in Chapter 2 are applied

to the domain of metamodeling. We illustrate how constraints are commonly based

on metamodel information and discuss why the co-evolution of metamodels and

constraints is necessary when applying MDE-concepts in evolving domains. We will

also show that our approach supports different ways of constraint generation: while

model transformations are used in Chapter 2, automatically instantiated constraint

templates are used in Chapter 3.

In Chapter 4, we apply our approach of constraint generation to the domain of

Software Product Lines (SPLs). We present a formal theory for incremental con-

sistency checking of individual products in SPLs, demonstrating further that the

approach can be applied to different domains and implemented in different ways. A

case study shows that generating constraints for individual software products is more

6



efficient than existing product checking approaches.

Each chapter includes a motivation section in which the problem domain is dis-

cussed, an example typical for the respective domain that illustrates the problem to

be addressed, an extensive description of the proposed solution in general as well as

a detailed discussion of how the solution is applied to the representative example,

and a validation of the presented concepts that includes a realistic case study and

performance analysis. Moreover, each chapter concludes with a detailed discussion

of related work in the respective field.

Chapter 5 then revisits the research questions defined above and discusses the

results thoroughly. Moreover, the chapter looks into possible threats to validity.

Finally, it gives a short overview of planned future work and briefly summarizes the

findings of this thesis.
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2

Constraint-Driven Modeling

With the broadening use of Model-Driven Engineering (MDE) [1] for complex soft-

ware systems, the generation of models from existing artifacts through model trans-

formation [18] is a vital necessity. Various classifications and taxonomies have been

published to compare the state-of-the-art (e.g., [19, 20, 21]). Rich transformation

languages are available, such as the ATLAS Transformation Language (ATL) [22],

Query/View/Transformation (QVT) [23] or Triple Graph Grammars (TGG) [24],

which define transformation rules that are executed by a transformation engine.

The transformation engine generates a target model from a source model, typically

through a series of transformation rules. To date, various sophisticated transforma-

tion techniques exist that produce excellent results as long as the generated models

are static (i.e., they are not adapted manually) and there are no uncertainties in-

volved (i.e., there is exactly one possible target model) [25, 26]. However, model

transformation has yet to overcome several key challenges [20, 27, 28]:

• How to allow transformation without overwriting changes made by the de-

signer?
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• How to transform in the face of uncertainty where multiple target models satisfy

a given source model?

• How to support consistency when using bi-directional transformations?

Traditional model transformation either generates a target model out of a source

model if none existed or it overwrites the existing target model. The latter is only

desired if overwriting the target model does not lead to information loss – a problem

when the designer edited the target model prior to transformation. In an idealized

model transformation scenario, the target model is generated but never modified

after transformation (later re-transformation does not lead to loss) or the source

model will not be modified after transformation (avoiding later re-transformation).

There are some situations where models are stable enough for this idealized sce-

nario to apply but in context of iterative/incremental development, designers tend

to change models continuously [25]. In such cases, a complete re-transformation may

seriously affect the designer’s normal workflow [29, 30] if they do overwrite changes

made manually beforehand. Hence, incrementality is required to allow partial model

transformation in order to limit such conflicts [30]. Although model-synchronization

as well as incremental and in-place transformation approaches have been proposed

(e.g., [31, 32, 33, 34, 35, 36]), those approaches typically rely on defined strategies

for handling conflicts and re-establishing consistency. Moreover, there are situations

in which these approaches cannot re-establish consistency [36, 37]. Thus, it cannot

be guaranteed that they produce the results that are actually intended.

The problem of re-transformation is also related to another problem: that of un-

certainty. Manual changes to a target model are necessary if the information present

in the source model is insufficient to generate the target model. There are two pos-

sible reasons for this: 1) the source model is incomplete, and/or 2) the semantic

differences between the source and target models make it impossible to generate the
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Figure 2.1: Traditional model transformation approach

target model in its entirety. Either reason implies uncertainty and current state-of-

the-art is either not used in these cases or the transformation implements a heuristic

that automatically decides. This severely reduces the usefulness of transformation

in the presence of incomplete information or uncertainties: either because model

transformation is not applicable (leading to less automation) or because transfor-

mation generates a potentially unintended target model (requiring manual addition

and changes to the target model after transformation). The issue is similar with

bidirectional transformations [28, 38], which are often used to synchronize models or

to keep them consistent, when both involved models are edited concurrently. As we

will show later, these issues might limit the usefulness of model transformation in

certain situations.

In this chapter, which is based on [15] and [16], we introduce Constraint-driven

Modeling (CDM), a generic approach that guides the construction of of desired target

models – either from scratch or from an existing but incomplete or undesired target

model – relying on model constraints and detected inconsistencies. In particular, this

chapter will discuss the key requirements and possibilities of incremental constraint

generation and management. Moreover, this chapter will illustrate how the approach

can address the issues of lost updates and missing information that may arise with

the use of model transformations during design model development.

CDM does not generate a target model out of a source model, as it is done by

traditional model transformation approaches (see Fig. 2.1). Instead, CDM gener-
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Figure 2.2: CDM approach overview

ates constraints from the source model that express conditions that must hold in

the target models, as shown in Fig. 2.2. Those constraints are not part of the tar-

get models but are passed to a dedicated consistency checker that validates them

on the target model. CDM thus does not overwrite or adapt the target mode and,

as will be shown, uses constraints to address the issues of lost updates because of

re-transformation, incomplete information because of uncertainties, and race con-

ditions during model-sychronization and when using bidirectional transformations.

The generated constraints, written in a constraint language (e.g., the Object Con-

straint Language (OCL) [39] or First-Order Logic [40]), are then continuously vali-

dated by a constraint checker on the target model. The constraint checker provides

the designer with feedback on constraint violations for guidance. Constraint viola-

tions in turn help the designer to stepwise adapt the existing target model to a target

model that satisfies all constraints. Indeed, CDM may also be chained with existing

state-of-the-art technologies for repairing constraint violations (e.g., [41, 42]) – with

or without designer interaction. These existing technologies provide guidance on

what to repair and, at times, even how to repair in order to achieve a correct target

model. Indeed, if the constraints are only satisfiable in a single target model then
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these repairs should be able to compute this model. Here, the advantage is that these

repair mechanisms do consider the state of the target model as part of the repair –

including any manual changes made before or after the transformation. Moreover,

the generated constraints may serve as input for a reasoning engine to generating

(parts of) a target model.

Thus, CDM should be seen as a complement to traditional model transformation

and model generation approaches; or it could also be seen as an alternative in concert

with repair technologies.

We evaluated our approach and showed its feasibility by implementing a proto-

type tool that generates constraints, updated and enforces them incrementally, and

informs the designer about existing constraint violations (i.e. inconsistencies). It

should be noted that CDM does not prescribe a particular constraint checking or

repair mechanism. To demonstrate the possibility of efficiently chaining constraint

generation and validation, we incorporated one such mechanism, called the Model/-

Analyzer [43], a scalable and incremental constraint checking mechanism which has

been validated on numerous industrial models [44]. However, any other technology

for constraint checking and repairing may be used instead. The use of the Model/-

Analyzer is merely to demonstrate that there is at least one such technology available

already. Since the Model/Analyzer has a proven scalability record in terms of han-

dling changes of the checked model [44], the evaluation will focus on the correctness

and scalability of the generation of target model constraints from a source model and

their initial validation. We will show in a case study that performing incremental

constraint transformation for UML design models does not impose significant losses

in performance when used live during modeling. Moreover, we will demonstrate

that the subsequent constraint validation times are similar to those observed in [44].

Our findings show that the approach scales and also provides instant feedback when

involved (source) models are edited.
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(a) (b)

Figure 2.3: Two UML models (a) and (b)

2.1 Motivating Example – Transformation Ambiguity

To illustrate our work, we first present a scenario that is challenging for common

model transformation approaches. Let us consider the sequence and class diagrams

– defined with the Unified Modeling Language (UML) [45] – shown in Fig. 2.3(a) and

Fig. 2.3(b) respectively. In Fig. 2.3(a), the unnamed instance of class LightSwitch

receives a message named activate. A common interpretation of UML sequence

diagrams is that this message requires that the instance of LightSwitch provides a

method named activate also [46, 47, 42, 48, 41]. At first glance, a simple transfor-

mation appears to solve the problem by automatically adding the method activate

to class LightSwitch in Fig. 2.3(b) whenever a message is added to a sequence dia-

gram whose name does not match any method in the class. An example for such a

transformation rule written in ATL is shown in Listing 2.1. The rule is executed for

every Message instance (defined in the from-block) for which it generates a Method

instance (defined in the to-block). It assigns a name and an owner derived from

the Message object for which it is executed to the attributes name and owner of the

generated Method.

However, there is an issue with this approach: Should the method activate be

added to LightSwitch or would it make more sense for the system to add it to

the superclass Switch? Obviously, this question is hard to answer automatically.
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from
s : SequenceDiagram ! Message

to
t : ClassDiagram ! Method (

name <́ s.name ,
owner <́ ge tC la s s (s.receiver.className)

)

Listing 2.1: Sample transformation to generate methods in class diagrams

One possibility would be to make an assumption. For instance, always add the

method to the target class, LightSwitch in our example. This option can lead to

the generation of potentially unintended models where methods are not declared in

the desired place or where methods are unnecessarily overridden. Another option is

the use of heuristics to find the most suitable solution for the problem. However,

heuristics typically employ metrics to evaluate possible solutions. Thus, heuristics

may chose solutions that are optimal with respect to defined criteria but that may

not be seen as optimal by designers. Note that these design decisions are typically

made when defining the modeling domain and its semantics, not at the time the

actual system under development is modeled. Therefore, those decisions cannot take

into account the characteristics of the model which they actually affect.

2.2 Approach

Common transformation languages usually describe the steps that have to be per-

formed to generate new models from existing ones. However, the previous section

illustrated that it can be difficult or even impossible to write transformation rules

that automate complex decisions.

2.2.1 Core Principles

In contrast to standard model transformations, we propose to generate constraints

on a model (to guide designers or enable automatic approaches that establish con-

sistency) rather than generating the model itself whenever precise transformation
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results cannot be derived. For example, the added message activate on the source

model imposes – according to the common semantics discussed above – a constraint

that a same named method should be available to class LightSwitch rather than

saying it should be owned by it. If the method is already there then the constraint is

instantly satisfied. If the method does not exist then the constraint’s violation will

identify this lack and further actions are required to deal with this problem – actions

that must either come from a human or be derivable from the constraint violation

(inconsistency) through reasoning (e.g., [49, 42]). Note that this delays the design

decision from a point in time at which nothing was known about the specific system

to a point at which designers already have knowledge about the specific system that

is modeled.

When traditional model transformation approaches are used (as depicted in Fig. 2.1),

the transformation process can be regarded as:

A
Tm
ÝÝÑ Bg (2.1)

where A is called the source model that conforms to a source metamodel and consists

of an arbitrary number of model elements. Tm is a set of transformation rules (called

the transformation model), that is used to transform A to the generated (denoted

by the subscript g) model Bg, which conforms to the target metamodel. Transfor-

mation rules are based on both source and target metamodels and are executed by

a transformation engine.

We expanded this notation and define our approach as:

A
Tc
ÝÑ C ù Br (2.2)

where the variable A denotes the source model and Tc is a set of model transformation

rules. However, as the solid arrow from A to C and the changed subscript c of T

indicate, the transformation model no longer generates a model (i.e., Bg), but instead
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it contains different transformation rules that are applied to A in order to generate

a set of constraints using information available in A, the constraint model C which

conforms to a constraint metamodel (i.e., a constraint language), as depicted in

Fig. 2.2.12 This constraint model consists of a set of constraints that are enforced

by an incremental consistency checker on the model Br, as indicated by the curvy

arrow from C to Br. The model Br is no longer the generated model but is now

called the restricted model, as indicated by the subscript r, that is either consistent

or inconsistent with the constraint model C, and therefore a valid or invalid solution

of the modeling problem. Note that in CDM the (generated) constraint model is

separated from the target model (i.e., the generated constraints are not part of the

target model).

Note that an initial version of Br may be generated through a traditional transfor-

mation (analogous to Bg), through automatic metamodel instantiation that is guided

by the generated constraints, or even built manually by a designer. However, once

generated, this proposed approach can detect inconsistencies if both A and Br are

evolved concurrently. Thus, our approach should not be seen as replacing traditional

transformation approaches but instead complementing them in case of uncertain-

ties and, as will be demonstrated below, also co-evolution, complex rule-scheduling

issues, or even model merging. Next, we present how it is applied.

2.2.2 Application: Uncertainties

Let us come back to our running example from Section 2.1 where we illustrated that

choosing the right class for a required method cannot be fully automated. The tradi-

1 This is different from existing approaches (e.g., [50, 51]) that derive constraints through in-
terpretation or translation of transformation rules which generate the target model. In CDM,
transformation rules are executed by standard transformation engines to generate constraints –
there is no interpretation or translation of rules involved.

2 CDM supports transformation rules that use source model information only (i.e., they do not
read information from the constraint model).
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rule t1
from

s : SequenceDiagram ! Ins tance
to

t : ConstraintModel ! Constra int (
context <́ "Package " ,
inv <́ " s e l f . c l a s s e s >́e x i s t s ( c | c . name=’" + s.className + " ’) "

)
rule t2

from
s : SequenceDiagram ! Message

to
t : ConstraintModel ! Constra int (

context <́ " Class " ,
inv <́ " s e l f . name=’" + s.receiver.className + " ’ imp l i e s s e l f . providedMethods >́

e x i s t s (m|m. name=’" + s.name + " ’) "
)

Listing 2.2: Transformation rules to generate class (t1) and method (t2) constraints

tional approach shown in Fig. 2.4(a) automatically generates one of several possible

models and we could at most use heuristics for deciding on which transformation to

use (which never guarantees intended results). However, while the knowledge con-

tained in Fig. 2.3(a) is insufficient to generate an update of the class diagram that will

always lead to the intended solution, it is sufficient to generate a correct constraint

on that diagram. Such constraints can be generated incrementally by transforma-

tion rules whose execution is triggered by the addition/removal of class instances or

messages in sequence diagrams that can be efficiently validated by state-of-the-art

consistency checkers.

To automate constraint generation in our example, we define two transformation

rules that are triggered by class instances or messages in sequence diagrams and that

(a) (b)

Figure 2.4: From ambiguous model transformation (a) to constraint transformation
(b)
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Figure 2.5: Application of CDM to models from Fig. 2.3(a) and Fig. 2.3(b)

use information from the sequence diagram to generate very specific and expressive

constraints. These rules are shown in Listing 2.2. The rule t1 takes an instance

specification (e.g., a lifeline) and generates a constraints that requires the model’s

base package to provide a class with a matching name. Rule t2 is triggered by a mes-

sage and generates a constraint that requires the message’s receiver class to provide

a method with a name equal to the message name. Note that, even though we use

ATL-like syntax for this example, our approach can be used with any transformation

language. After applying these rules to the motivating example from Section 2.1 as

illustrated in Fig. 2.5 and according to Eq. (2.2), C consists of the following OCL

constraints:

c1 context Package inv:

self.classes->exists(c|c.name=’LightSwitch’)

c2 context Class inv:

self.name=’LightSwitch’ implies

self.providedMethods->exists(m|m.name=’activate’)

c3 context Class inv:

self.name=’LightSwitch’ implies

self.providedMethods->exists(m|m.name=’turnOff’)

In Fig. 2.5 we can see that the method required by the constraint c2 is not present in

Br, as indicated by the empty, dashed rectangle in the LightSwitch class, meaning
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that this particular model will be marked inconsistent. Note that we use OCL as

the constraint language in our example because it is a well known and accepted

language for writing constraints for design models and we have existing tool support

for incrementally validating OCL constraints and repairing them. Nonetheless, in

principle any constraint language and consistency checker may be used (e.g., [52]).

Fig. 2.4(b) illustrates the basic concept of the constraint-driven modeling ap-

proach. It is noteworthy that the approach does not modify the restricted model.

It simply defines constraints that restrict it. The generated restriction – depicted as

partial frame with rounded corners around the restricted model Br – may be light in

that there may be various options on how to change the restricted model to satisfy

the constraints - hence supporting uncertainty. In such as case, the designer – or also

a fully automated approach that uses heuristics – has the freedom to decide which

of the options to select (e.g., add activate to LightSwitch or Switch) with the

knowledge that the approach prevents options that are invalid. In the most extreme

case, the restrictions may be severe enough to allow for one option only. In this

case, the only remaining option could be chosen automatically, like in traditional

transformation, to modify the target model Br. Note that in contrast to heuristics-

based model transformation, an approach that derives possible model adaptations

automatically after the generation of constraints may not only use a defined strategy

and the target model itself as input for finding solutions, but it may also consider

the generated constraints. Thus, more information is available for reasoning.

Fig. 2.6 shows the visual notations we use throughout this chapter to illustrate

(a) (b)

Figure 2.6: Traditional (a) and constraining (b) approach
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the differences between common model transformation and our approach. Fig. 2.6(a)

is equivalent to Eq. (2.1). Fig. 2.6(b) shows the notations for our approach. Note

that the constraint model C and the curved arrow to the restricted model in Eq. (2.2)

are replaced by a partial, restricting frame around B; Tc is not depicted.

2.2.3 Incremental Constraint Model Management

Let us take a closer look at the transformation that generates the constraint model

C. As shown in Eq. (2.2) and Fig. 2.5, applying the transformation rules of the

transformation model to the source model generates the constraint model.

The transformation approach we use supports incrementality through the auto-

matic generation of trace information during the execution of transformation rules

to allow updates of both the source model and the transformation model without

performing a complete re-transformation. When a transformation rule is executed,

our approach captures all source model elements that are accessed during the ex-

ecution and in particular which source model element matched the rule execution

context and thus triggered the execution. This means that updates of the source

model or the transformation model do only lead to a partial, operation-based up-

date of the constraint model (i.e., the existing constraint model is adapted instead of

generated from scratch). Indeed, those partial constraint model updates may change

the consistency status of a restricted model.

Source model update.

When the source model A is updated to A1, we can write this as

A
∆A
ÝÝÑ A1 (2.3)

where ∆A is a sequence of modifications (i.e., xmodel element, action P

tadd, remove, updateuy) done to A (e.g., add a new model element or update an
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existing element). Based on ∆A and the transformation model Tc, the set ∆C can

be generated, as shown in Eq. (2.4).

∆A
Tc
ÝÑ ∆C (2.4)

Specifically, matching transformation rules from the transformation model are exe-

cuted to produce newly required constraints for added source model elements and

constraints that were generated from removed source model elements must be re-

moved from the constraint model. The constraints to be removed are determined

by using the trace information generated during rule execution. For source model

element updates, trace information is used to find the constraints that have been

generated using now outdated source model information. For those constraints, the

transformation is re-executed and the previously generated constraints have to be

removed from the constraint model. ∆C includes pairs of constraints and actions

(i.e., xconstraint, action P tadd, removeuy) that define whether the constraint should

be added or removed from the existing constraint model C. By applying ∆C on C,

the updated constraint model C 1 is generated:

C
∆C
ÝÝÑ C 1 (2.5)

Specifically, for a pair xconstraint, addy, the constraint is added to the constraint

model and for a pair xconstraint, removey the constraint is removed from the con-

straint model. Let us consider the evolution of the models shown in Fig. 2.3(a) and

Fig. 2.3(b) to the versions shown in Fig. 2.7(a) and Fig. 2.7(b) where the name of

the message #2 was updated to deactivate, the message #3 was introduced, and

the name of the method turnOff was changed to switchOff. For the changes in the

source model, the corresponding ∆A is xxMessage2, updatey, xMessage3, addyy.

To build ∆C, the transformation engine executes those transformation rules that

use elements in ∆A (i.e., message #2 and message #3) to generate the corresponding
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(a) (b)

Figure 2.7: Evolved versions of Fig. 2.3(a) and Fig. 2.3(b)

Figure 2.8: Constraint model updates after source model changes

constraints, as defined in Eq. (2.4) and shown in Fig. 2.8. For xMessage2, updatey,

the constraint c31 is generated and the information xc31, addy is added to ∆C.

c3’ context Class inv:

self.name=’LightSwitch’ implies

self.providedMethods->exists(m|m.name=’deactivate’)

Since the constraint c3 was already generated from the same element as c31, mes-

sage #2, xc3, removey is also added to ∆C in order to remove the now outdated

constraint c3. Note again that the previous generation of c3 through the execution

of t2 with message #2 can be found as that rule execution generated corresponding

trace information. For xMessage3, addy, the transformation rule t2 is executed to

generate a new constraint c4 and xc4, addy is added to ∆C.

c4 context Class inv:

22



self.name=’LightSwitch’ implies

self.providedMethods->exists(m:Method|m.name=’dim’)

Note that in this example, both elements in ∆A are used as context of a transforma-

tion. However, if an element in ∆A was accessed in any way during the execution of

a transformation rule, the transformation also has to be re-executed (e.g., c3 would

have been updated to c31 also if not the message name but the receiver’s name would

had changed). At this point, ∆C is txc3, removey, xc31, addy, xc4, addyu.3 When these

changes are applied to C “ tc1, c2, c3u as defined in Eq. (2.5) and shown in Fig. 2.8,

the resulting updated constraint model is C 1 “ tc1, c2, c31, c4u. We used dotted lines

for removed elements, that is c3 and the corresponding inconsistency in LightSwitch.

As Fig. 2.8 indicates, the constraints c31 and c4 are violated by the restricted model

since the class LightSwitch does not provide the required methods deactivate and

dim. Note that, as discussed above and shown in Fig. 2.2, the constraint model

is generated incrementally and separated from the restricted model. If constraints

are added to the constraint model manually by designers, those constraints remain

unchanged by our approach due to the nature of our incremental constraint model

updates and the fact that for manually added constraints there is no trace informa-

tion available. However, manual updates of generated constraints are currently not

supported and may be overriden during constraint updates.

Transformation model update.

If the transformation model Tc is updated to T
1

c , the changes ∆Tc, which have the

form xtransformation rule, action P tadd, removeuy, are derived – based on existing

3 If the re-execution of a transformation rule updates an existing constraint (cx) rather than re-
generating it, then both the outdated version (i.e., cx) and the updated version (i.e., c

1

x) identify
different version of the same object (i.e., the version cx is lost as a consequence of the update). In
this case, the constraint is removed and added back to the constraint model, causing the validation
of the constraint with the updated information (i.e., the necessary re-validation). Such updates
may also be handled automatically by some consistency checkers.
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trace information – and used to generate ∆C from A, as shown in Eq. (2.6).

A
∆Tc
ÝÝÑ ∆C (2.6)

∆C can then be used as shown in Eq. (2.5) to update the constraint model to C 1.

Based on the model versions after the discussed source model update, let us con-

sider further changes – this time to the transformation model – as depicted in Fig. 2.9:

the removal of the transformation rule t1 and the addition of the new transformation

rule t3, which is triggered by elements of the UML type Instance. ∆T in this case

is xxt1, removey, xt3, addyy. For the removal of t1, the constraints that have been

generated for this rule are removed from the constraint model and no transformation

rules are executed. Since traces reveal that c1 is the only constraint generated by

t1, xc1, removey is added to ∆C. For the addition of t3, the transformation executes

just this transformation rule and produces the new constraint c5 and adds xc5, addy

to ∆C, which finally is txc1, removey, xc5, addyu.

c5 context Package inv:

self.ownedElements->exists(c:Class|

c.name=’LightSwitch’)

By executing ∆C, the existing constraint model C “ tc1, c2, c31, c4u becomes C 1 “

tc2, c31, c4, c5u.

Ultimately, changes of the source model A affect the constraints that are enforced

by the consistency checker:

C 1 ù Br (2.7)

Next, we describe how such constraint model changes can affect the consistency

status of the restricted model Br.
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Figure 2.9: Constraint model updates after transformation model changes

2.2.4 Constraint Validation and Solution Space

We define the solution domain of a modeling problem to include all possible in-

stances of a metamodel (there are likely infinite). The solution space includes all

valid models of the solution domain. Constraints define certain criteria that valid

models must meet. Validating a constraint on a specific model determines whether

the model meets those criteria – if it does not, it is not part of the solution space.

Therefore, applying a constraint decreases the size of the solution space. For exam-

ple, Fig. 2.10(a) shows that the solution space in our running example is reduced to

the specific models B1, B2, B3, and B5 (drawn as black filled circles) when the con-

straints c1 - c4 are applied after the source model changes performed in Section 2.2.3.

In our illustrations we show the remaining solution space towards the center of the

circle, models outside the solution space are drawn as an unfilled circle. Note that

this simplified view is only used to make the illustrations readable. Moreover, we

assume that there is only a limited number of possible models for the illustration –

in practice the number of valid models may remain infinite.

We define the validation of a constraint c for a specific model m as val : pm, cq Ñ

tfalse, trueu where false is returned if m violates c, true otherwise. For a restricted

model Br and a constraint model C, the result of a total validation (i.e., a validation
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of all available constraints, written as valT ) would then be equal to:

valT pBr, Cq “
ľ

1ďiď|C|

valpBr, ciq (2.8)

If at least one constraint validation valpBr, ciq returns false, the overall status of

Br is also false and therefore the model is outside the solution space. It is easy to

see that the order of constraint validation does not affect the final result.

However, the execution order determines when the overall inconsistency of a model

Br is discovered during the validation and the order in which inconsistencies are

corrected can of course be important when deriving stepwise adaptations.

Constraints are composed of expressions that belong to exactly one constraint

(i.e., information is not shared between constraints) and that are evaluated on the

restricted model only. Therefore, structural dependencies between constraints do

not exist and are not considered here. The addition of a new constraint thus does

not affect the validity of existing constraints as they are not connected structurally.

This leads us to the conclusion that constraints are structurally independent

of each other.4 Furthermore, the used transformation rules do only access the

source model to construct constraints and add the constraint to the constraint model

without accessing other constraint model elements, thus the transformation rules

for generating constraints are independent and dependencies between them

that require a certain order of execution cannot occur. These observations have

interesting benefits to model transformation discussed next.

When the constraint model is changed, so need to be the restrictions imposed by

it. There are three possible constraint model changes, which we will show next: i)

addition, ii) removal, and iii) update of constraints.5

4 Note that structural independence is a general property of constraints and is not limited to
specific constraint languages – in contrast to, for example, OCL’s property of being side-effect-free.

5 In practice, a constraint update may be done by a consecutive removal and addition of constraints.
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(a) Before (b) Changes (c) After

Figure 2.10: Effects of constraint changes on solution space

Constraint addition.

When new constraints are added to the consistency checker, the solution space either

stays unmodified or is narrowed, as illustrated in Fig. 2.10. The addition of c5 in Sec-

tion 2.2.3, which requires an element of type Class and with the name LightSwitch

must be owned by a Package, does reduce the remaining solution space (indicated

by the thinly shaded area around B3 in Fig. 2.10(b)) so that the previously valid

model B3 is removed from the solution space because there the class LightSwitch

did not provide such a method, as shown in Fig. 2.10(c). The manual addition of a

new constraint c6, which requires a UML Package to own at least one element does

not change the remaining solution space because there are other constraints (e.g.,

c5) that impose stronger restrictions than c6.

c6 context Package inv: self.ownedElements->size()>0

As Eq. (2.9) shows, we can easily split the complete evaluation of the new con-

straint model C 1 into the validation of the old constraint model C and only those
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parts of C 1 that were actually added (i.e., C 1zC).
|C1|
ľ

h“1

valpBx, c
1
hq “

|C|
ľ

i“1

valpBx, ciq^

|C1zC|
ľ

j“1

valpBx, pC
1
zCqjq

(2.9)

Assuming that the validation result for C is still available, we can see that only the

last part of Eq. (2.9) has to be evaluated to determine whether a specific model Bx

is part of the updated solution space (i.e., a valid model). Obviously, this validation

is not even relevant if the old validation result was already true.

As we have already discussed, the order of constraints is not relevant for the final

result of the consistency checker. Therefore, the order in which constraints are added

to the constraint model is not relevant for the final consistency status of a model

either.

Constraint removal.

The removal of constraints can increase the size of the solution space. Fig. 2.10 shows

the removal of constraint c1, as discussed in Section 2.2.3. This change means that

the model B4 becomes part of the solution space (as shown in Fig. 2.10(c)), which was

increased by the densely shaded area around B4 in Fig. 2.10(b). Intuitively, it is not

possible that the removal of a constraint narrows the solution space. After constraints

are removed, the restricted model is validated with the remaining constraints. As we

have seen, the order of the constraints has no effect on the final validation result.

In contrast to the addition of constraints, the basic consistency checking mecha-

nism we used in Eq. (2.8) cannot be split into parts to reduce calculation effort since

we do not know the result of the remaining constraints. However, if we capture the

constraints that were inconsistent during the validation of C, we can define a function

icpBx, Cq “ tc|c P C ^ valpBx, cq “ falseu that returns exactly those constraints.
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After removing constraints from C to generate C 1, CzC 1 is the set of constraints that

are removed from the constraint model. If icpBx, Cq Ď CzC 1 holds, the model Bx is a

valid solution after the constraint model update since all constraints that previously

caused an inconsistency are no longer part of the constraint model. Whether the

function valT or the set comparison is used to determine the new consistency status

of a model, either way the order of removal does not affect the final result.

Constraint update.

We have defined that a constraint update consists of the removal of old and the

addition of new constraints. Therefore, such an update can either increase or decrease

the size of the solution space, depending on the specific update. The constraint c4 is

based on a message in a sequence diagram and it requires the LightSwitch class to

provide a Method with the name dim. If the constraint is updated so that it requires

an instance of a more specific class, for example an instance of AsyncMethod instead

of Method, c4 is updated to c41, the solution space size is decreased (indicated by the

thinly shaded area around B5 in Fig. 2.10(b)) and B5 becomes inconsistent because

the class only provides a Method object. However, Fig. 2.10(b) also illustrates a

possible update to c42 (indicated by the dotted line) where the required object is

allowed to be an instance of a more general class (e.g., NamedElement). This update

would increase the solution space by the densely shaded area and make B6 consistent.

After performing the addition of c5 and c6, the removal of c1, and the update

of c4 to c41 the updated solution space consists of B1, B2, and B4 as shown in

Fig. 2.10(c).

2.3 Providing Guidance and Executing Fixes Automatically

When an inconsistency is detected, the minimum amount of guidance provided to

the designer is a notification about the inconsistency’s occurrence and its location
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(a) Without guidance (b) With guidance for B3

Figure 2.11: Adding guidance to transform inconsistent models to consistent ones

(i.e., which model element violates which constraint). Based on data captured during

constraint validation, consistency checkers can determine which model elements are

actually causing the inconsistency [42]. Hence, the designer can be informed about

the locations of error-causing elements.

Constraint-driven modeling may appear inferior to traditional transformation in

that it does not generate or update model elements in the restricted model. However,

there is currently considerable progress in suggesting repairs to individual inconsis-

tencies in design models (e.g., [49, 53, 42, 54, 55, 56, 57]). Based on a specific

constraint (or a set of constraints) and the inconsistent parts, it is thus possible to

derive modifications – like specialized transformations – that lead to a consistent

model. If such modifications can be derived, they are proposed to the designer as a

list of options, or a suitable solution may be chosen automatically by applying heuris-

tics. In Fig. 2.11, the general idea of fixing is illustrated for the inconsistent model

version B3. The solution space for the modeling problem is depicted in Fig. 2.11(a).

In Fig. 2.11(b), the derived fixes for the inconsistency (i.e., the possible transfor-

mations that may be executed to change the current model version to one within

the allowed solution space) are depicted with solid arrows from B3 to B4, B5, and

B6. If the restrictions are unambiguous, only a single option remains and it may

be applied automatically (much like transformation). For example, the action <add
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method "dim" to class "LightSwitch"> is an option for removing the inconsis-

tency caused by the absence of the method dim in the LightSwitch class and the

constraint c4. Thus, using constraints does not only expose inconsistencies but it

also enables user guidance to help understanding and solving them [58]. However,

models may contain a large number of inconsistencies that makes manually fixing

them one-by-one – even with guidance – a challenge [14]. Hence, the use of fully

automated approaches may be preferable in such cases. Thus, deciding which fixing

strategy to use (i.e., guided manual fixing or automated fixing) strongly depends

on the specific situation (i.e., the present inconsistencies). Let us now discuss how

both strategies support our approach and for which typical scenarios they are most

suitable.

2.3.1 Guided Fixing

In our running example we used transformations for generating the constraints from

specific model elements such as messages. We believe that incorporating source

model data makes a constraint much more specific and expressive when presented to

the designer than a manually written, generic constraint that relies on metamodel

data and functions (e.g., the constraints use actual method names).

We discussed above that structural dependencies between constraints do not oc-

cur and that their validation is independent. However, logical dependencies between

constraints in terms of required model characteristics and corresponding model ele-

ments may occur (e.g., c1 requires a class LightSwitch and c2 – c3 require specific

methods in this class). Without a LightSwitch class, the model cannot be con-

sistent. However, the constraints c2 – c3 are consistent if there is no such class at

all or if the specific class provides the methods. This means that choosing an op-

tion that removes the inconsistency of c1 (i.e., the addition of a new and empty class

named LightSwitch) leads to the constraints c2 – c3 being inconsistent until they are

31



addressed by adding the required methods to the new class. Creating additional in-

consistencies can therefore be necessary to achieve overall model consistency. Recent

research has shown that such problem can be solved, for example using search-based

transformation in combination with constraints [59]. Other recent studies suggest

that such dependencies can be leveraged to decrease the number of possible actions

to fix inconsistencies dramatically [60].

However, even without considering logical dependencies between constraints it

has been shown that the average number of possible fixes per inconsistency for com-

mon UML well-formedness constraints in industrial models stays below 10 [42]. Thus,

a newly introduced inconsistency can be easily handled through guided fixing. More-

over, the time for calculating possible fixes typically remains under 0.1 seconds with

common approaches such as [61] or [42]. Therefore, chaining the incremental con-

straint generation and management of CDM, which, as we will show in Section 2.5,

updates the constraint model and provides consistency feedback within milliseconds,

with existing semi-automatic fixing approaches produces a modeling environment

in which designers are informed about both inconsistencies and possible options for

resolving them during modeling. Note that a variety of such approaches is available

for use with CDM. For example, there are search-based approaches that find possible

fixes by exploring the problem’s solution space (e.g., [14] or [61]). Moreover, there

are also incremental techniques that compute possible fixes directly based on specific

inconsistencies (e.g., [42]).

Guidance is however not limited to inconsistencies. For each constraint, its source

as well as the locations where it is validated are available and can be presented to the

designer by a modeling tool. When the source model is edited during development,

the constraints that are affected by those changes can also be highlighted. When a

designer, for example, adds a new message to a sequence diagram with a name that

already has a matching method in a class diagram, a modeling tool may highlight
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the constraint and show him or her the existing method. The designer can then

easily decide whether this existing method should be used (i.e., the message means

the existing method) or if a naming conflict was introduced (i.e., a new method was

planned).

2.3.2 Automated Fixing

Although guided fixing is suitable for removing small numbers of inconsistencies,

there may be situations in which larger numbers of inconsistencies occur that are not

manageable through fixing inconsistencies one-by-one. As we have briefly mentioned

above, constraints may come from diverse sources. For example, they may be derived

from a metamodel and may be used for validating the structural integrity of a specific

metamodel instance (i.e., model) in a flexible modeling tool (e.g., [62, 63, 64]). In

such a case, a generic constraint derived from the metamodel could, for example,

check that all modeled classes provide exactly one name. Another constraint may

check that no class has more than one parent class. Note that such generic constraints

have to be enforced for every single class present in the restricted model. Indeed, if a

new concept is then introduced in the metamodel (e.g., a new single-valued attribute

for classes called "description"), this would result in the generation of a new generic

constraints that required all classes to provide such a field. For every single class in

the restricted model, an individual inconsistency is detected. Indeed, the number of

inconsistencies that occurs due to such a change is often not manageable manually.

There has been significant progression in the field of automated model healing and

fixing of inconsistencies. For instance, Anastasakis et al. [55] presented an approach

for the transformation of UML models and OCL constraints to Alloy [65] that allows

for sophisticated reasoning over UML models. After using Alloy for analyzing the

model and extending it automatically to establish consistency, the extended model

can be transformed from Alloy back to UML using the approach presented by Shah
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et al. [56]. Kuhlmann and Gogolla [57] use a similar approach for transforming UML

models and OCL constraints to relational logic reasoning, based on SAT [66], with

Kodkod [67] and transforming the resulting model back to UML.

A different approach for fixing inconsistencies was presented by Xiong et al. [41].

They developed a language called Beanbag that allows the definition of constraints

and fixing behavior at the same time. When a constraint becomes inconsistent, its

associated fixing behavior is used to derive a set of model changes that are executed

to restore consistency. The Beanbag language is quite similar to standard OCL

but provides several additional language constructs that allow constraint authors to

also specifiy how issues may be solved. Our approach can be used to generate such

Beanbag programs instead of pure OCL constraints. Note that with our approach,

the fixing-related parts may also be generated using specific source model data,

potentially allowing for more precise or more efficient calculation of fixes.

In principle, it is thus possible to chain CDM and the discussed approaches to

automatically keep target models consistent at all times.

2.3.3 User-centric Approach

As we have discussed, CDM may be extended by both guided manual fixing and

automated fixing in principle. However, usually one approach is more favorable than

the other depending on the various aspects (e.g., the number of inconsistencies, kinds

of inconsistent constraints). The decision which approach is more suitable is non-

trivial and may also depend on the designer’s abilities. Therefore, we believe that it

should be the designer to decide whether an inconsistency (or multiple inconsisten-

cies) should be fixed manually or automatically.

As discussed in Section 2.3.1, changes in the source model will often lead to a

small number of new inconsistencies that can be fixed manually because of typically

small numbers of available options. However, as discussed in Section 2.3.2, there may

34



also be scenarios in which multiple inconsistencies – which are, however, based on a

single kind of constraint – are introduced by a single source model modification. In

that scenario, the use of fully automated approaches will often be the best solution.

Note that using an automatic approach based on sophisticated reasoning is always

an option for getting a valid model quickly.

2.4 Additional Benefits of Constraint-driven Modeling

Above, we described how CDM addresses uncertainty in transformations, an issue

on which we also focused in the case study we used for evaluation (see below). Next

we discuss how the approach can be applied in additional scenarios to address issues

related to model-synchronization and bidirectionality.

2.4.1 Rule-scheduling and race conditions.

Now let us consider an example where two transformation rules tm1 and tm2 are

working with the same generated model and the order of rule execution is impor-

tant. For example, the sequence diagram in Fig. 2.3(a) contains an instance of the

class LightSwitch. Therefore, let us assume that transformation rule tm1 generates

a corresponding class if no such class exists in the diagram in Fig. 2.3(b). As we

have discussed in Section 2.1, the sequence diagram requires the class LightSwitch

to provide a method activate. Let transformation rule tm2 generate this method

in LightSwitch.6 When the transformations are performed, it is crucial that tm1 is

executed before tm2 to ensure that the class LightSwitch exists before the method

activate is added. This issue is illustrated in Fig. 2.12(a) where the bottom trans-

formation encounters an error after the execution of tm2. If the rule tm1 is still

executed, the resulting model B will contain an empty LightSwitch class because

6 We ignore the fact that such a transformation will not always lead to satisfying results – as
discussed above – for this example.
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(a) (b)

Figure 2.12: From dependent (a) to independent (b) transformation rules

only tm1 was executed successfully. If the execution of rules is stopped after the

error, no model is generated at all. Defining the order of rule execution manually is

tedious and a constant source of error. Moreover, support for defining an execution

order is not a standard feature of all transformation languages or systems [19].

The constraining approach, shown in Fig. 2.12(b), is free of scheduling issues

because constraints cannot structurally depend on other constraints and the order

of transformation is not relevant for the transformation results, as discussed in Sec-

tion 2.2.4. Hence, the rules t1 and t2 we have previously defined can be applied in

any order and produce the distinct constraints c1 and c2 in Fig. 2.12(b). If a model

does not provide the required information for constraint validation (e.g., the class

that should be checked is not present), the validation fails and an inconsistency is

detected.

2.4.2 Bidirectionality and model merging.

When models should be synchronized automatically, transformations are often used

to propagate changes from one model to the other and perform the corresponding

changes. Let us assume that we have established transformation rules that keeps

message names and method names synchronized and that a link between messages

and corresponding methods exists. In Fig. 2.7(a), the name of the highlighted mes-

sage has been changed from turnOff (see Fig. 2.3(a)) to deactivate. Concurrently,

the corresponding method in the class diagram was changed from turnOff() (see
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Fig. 2.3(b)) to switchOff(), as highlighted in Fig. 2.7(b). Since both synchro-

nized model elements were changed (indicated by the bold arrows), there is no way

to determine in which direction the required synchronization should be performed.

Performing a synchronization in this situation will lead to the loss of the changes in

the generated model (i.e., either B2 overrides changes in B1 or A2 overrides changes in

A1 that cannot be used for a transformation in the opposite direction afterwards). A

possible solution would be the concurrent execution of the transformations followed

by a merge of the updated models (A1 and B1) and the resulting generated models

(A2 and B2), as illustrated in Fig. 2.13(a), that generated A3 and B3. However,

this requires a complex merging strategy and is likely to produce models that still

require manual adaptation.

The solution of the constraint transformation approach is shown in Fig. 2.13(b).

We can see that our approach still has to decide which change to process first. How-

ever, because only constraint models are updated, the restricted models A1r and B1r

are not changed and can therefore still be processed to perform constraint updates in

the opposite direction, leading both constraint models ca and cb being updated. With

our approach, no immediate merging (either automated or manual) is required when

restricted models are edited and following source model changes lead to constraint

updates.

After the constraint model updating took place in the example, there are two

new constraints: i) message number 2 in Fig. 2.7(a) should be named switchOff

(from Fig. 2.7(b)) and ii) the name of the method switchOff in Fig. 2.7(b) should

be changed to deactivate (from Fig. 2.7(a)). The designer can then decide which

of the elements should be renamed.
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(a)

(b)

Figure 2.13: From bidirectionality (a) to unidirectional (b) constraint transforma-
tion

2.5 Case Study – UML Model Constraints

To assess the feasibility and the applicability of CDM, we conducted a case study

with two goals: i) demonstrate the applicability of CDM to typical MDE scenarios,

and ii) assess the efficiency and performance of our constraint-management approach.

For the former goal, the case study relies on large-scale industrial-grade models in the

38



Figure 2.14: Possible changes in CDM

domains of object-oriented software modeling – CDM was used to generate various

kinds of domain-specific constraints. For the latter, we performed various source

model changes to trigger changes in the set of enforced constraints (e.g., constraint

addition). In Fig. 2.14, the different sources of change (∆) in our approach are

depicted. Note again that the application of CDM consists of two core phases: i)

constraint management, and ii) constraint validation. The first phase is triggered by

changes of the source model (∆A) and includes an update of the applied constraints

(∆C). The second phase – validation – is triggered by changes of either the constraints

(∆C) or the restricted model (∆B).

In principle, we need to demonstrate performance for both phases – including the

validation triggered by changes of the restricted model (∆B). However, the perfor-

mance assessment for model changes (∆B) can be omitted for two reasons. First,

this work uses an existing consistency checker that was already thoroughly evaluated

on 34 large-scale industrial models of up to 162,237 model elements and complex

constraints in [44, 48]. It was shown that most changes to a restricted model are

processed in less than one millisecond and that the validation is faster than typical

batch-validation performed by conventional consistency checkers. Second, this thesis

does not prescribe any consistency checker in particular. In principle, any technology

may be used. The one used in this chapter is merely a proof that current state-of-

the-art is sufficiently progressed to support the second phase. In our performance

tests we captured the time needed for handling a source model change and generate,

remove, or update constraints (i.e., processing of ∆A and ∆C) as well as the time

for constraint validation triggered by the resulting changes of constraints (∆C). In
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our analysis we provide values for both constraint management only and constraint

management with constraint validation. The observed times for constraints con-

straint were compared with the previously observed validation times for manually

written constraints to assess how using generated constraints affects the validation

performance of existing consistency checking technologies.

2.5.1 Prototype Implementation

To perform the case study, we implemented a prototype tool. The core component

of the tool is a custom implementation of an incremental constraint transforma-

tion engine that supports arbitrary EMF-based source models and generates OCL

constraints. The transformation engine builds the trace information required for

incremental constraint model updates automatically. For efficient constraint vali-

dation, we employ the Model/Analyzer [43] consistency checking framework which

we slightly adapted to support EMF-based models in general instead of only UML-

models. Note that the constraint validation may be done by any consistency checker

that supports EMF models and OCL constraints. However, we chose the Model/An-

alyzer because it was evaluated with design models that were used in the case study.

Thus, observed validation times may be compared to previously observed data. We

also implemented operation-based change trackers that are used to observe models

and inform the transformation engine or the consistency checker, respectively, about

changes, as we have discussed in Section 2.2. The transformation engine is imple-

mented to support arbitrary numbers of source and restricted models concurrently.

2.5.2 Scenarios and Design Models

For this case study, we apply CDM to typical object-oriented software models in

and generate constraints from different diagrams, as we have already illustrated in

Section 2.1 and Section 2.2. In particular, we use individual parts (i.e., diagrams)
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of large-scale UML models from which we generate constraints that restricts other

parts of the same model.

We employed 22 of the industrial models that were previously used in [44, 48].

Note that those 22 models were selected because they include different types of

diagrams from which constraints that restrict other diagrams can be generated (i.e.,

we did not use design models that include diagrams of only one type).

The models include class diagrams, sequence diagrams, state charts, use-case

diagrams, and various other UML diagrams. The model sizes varied between 337

and 27,751 top-level model elements. That is, instances of primitive data types, for

example, were not counted.

2.5.3 Transformation Rules

We used the transformation rule t2 shown in Listing 2.2 to generate constraints from

Message instances in sequence diagrams, as discussed in Section 2.2.

2.5.4 Performance Evaluation

For assessing change processing performance, we used three different tests:

Test I Replacing ambiguous transformations – as discussed in Section 2.2

Test II Replacing merges – different sources restrict a single model

Test III Restricting multiple models – one source restricts different models

Test I simulated the replacement of traditional transformations in the scenario

involving uncertainty we described in Section 2.2. Note that UML models usually

consist of one single model that includes all data and that different diagrams only

represent different views on that data. Therefore, we use the same model as source

and restricted model in Test I (this being another benefit of our approach). The test
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was executed for all available models that included elements matching the transfor-

mation rule context.

Test II assessed the performance of our approach in scenarios where multiple

source models are used to generate various constraints that are restricting the same

model (i.e., merges of generated models would be required with traditional ap-

proaches). This test shows the behavior of the approach when complexity is in-

creased and more models become involved. As in Test I, we use one model as source

and restricted model at the same time. Other models are used as additional source

models from which additional constraints on the restricted model are generated. The

same models as in Test I were used as source and restricted models, the selection of

additional source models was done randomly. The test was done with five and ten

concurrent source models.

Please note that in Test I and Test II our approach was applied to replace tradi-

tional model transformations and model merges. However, CDM follows a different

principle than the replaced approaches as it generally emphasizes the importance of

user interaction. The validation therefore focuses on assessing whether the perfor-

mance of CDM is acceptable for usage in modeling tools without interrupting tool

users. Thus, we do not discuss in detail the replaced approaches and it is not nec-

essary to compare the performance of CDM to the performance of the approaches it

replaced.

Test III simulated scenarios where a single model is the source for transformations

that produce constraints for different, concurrently active restricted models. Again,

the same models as in Test I were used as source models. The restricted models were

selected randomly, groups of five and ten concurrent restricted models were used.

This test was performed to assess the scalability and the efficiency of our approach

when the numbers of generated constraints and required constraint validations as

well as the required infrastructure’s complexity increase.
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Source Model Changes.

For all tests, randomly selected single model elements were removed from a source

model and then added back to the source model, which forced an incremental con-

straint model update. That is, the update of exactly one constraint for Test I and

Test II and the update of at least one constraint for Test III. For Test II, the source

model on which a change was performed was also chosen randomly for every per-

formed change. Note that we only performed changes that updated constraints which

were actually validated on at least one restricted model element. This ensures that

all changes impact source models used during transformation. Note also that com-

plex model changes or refactorings, such as the removal of a whole package, can be

expressed as a sequence of atomic changes. The processing time for complex changes

can therefore be estimated using the number of required atomic changes and the

observed times required per such atomic change.

All the tests were run on an Intel Core i5-650 machine with 8GB of memory

running Windows 7 Professional. Each model change was executed 100 times and

we used the median values for our analysis.

Results.

We now discuss the observations made for the individual tests.

Test I: In Fig. 2.15(a) the median times for adding a source model element are

depicted. For the transformation time (i.e., the time required for constraint genera-

tion), the observed processing times are steady at about 1 ms and slightly increase

for large models of over 27,000 model elements to about 10 ms. For the total pro-

cessing time including both transformation and constraint validation, we observed a

correlation with the model size. This is based on the fact that we generated generic

constraints that were validated for all instances of a specific type. Therefore, the to-

tal time required for validation increases with the number of elements matching the
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(a) Addition processing times

(b) Removal processing times

Figure 2.15: Results for Test I

constraint context. However, the dashed line in Fig. 2.15(a) shows that the valida-

tion time per constraint context matching element was steady at under 1 ms. These

observations are consistent with those made in [44] and indicate that the constraints

generated with CDM allow for the same quick validation as manually written con-

straints. Note that the total processing times even for large models reach a maximum

of about 100 ms.

The median times for removing a source model element are depicted in Fig. 2.15(b).

Note that the median total processing time has a maximum of about 10 ms even for

the largest models. The time required for constraint validation is negligible because

there is no validation required when removing constraints. We observed a correlation

between the number of constraints generated from the source model and the time
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required for finding and removing the constraints based on the removed source model

element in the test. This is caused by the implementation of the trace information

in the transformation engine. Specifically, we believe that this is based on the use

of hash tables and an increasing number of hash collisions occuring with increasing

numbers of traced source model elements. The spikes in the graph for models be-

tween 8,000 and 20,000 model elements support this assumption and indicate that

the model characteristics have a stronger effect than the model size.

Test II: In Fig. 2.16(a), the processing times for the addition of an element to one

out of five concurrent source models are shown. Note that there is no correlation

between the total source model size and the median processing times.

In Fig. 2.16(b) the processing times for ten concurrent source models are depicted.

Again, there is no correlation between the total source model size and the processing

time. Additionally, note that the processing times for both five and ten source models

are typically within 10 ms and 100 ms – similar to the results of Test I in Fig. 2.15(a) –

indicating that the additional infrastructure required for handling concurrent source

models does not lead to reduced efficiency.

In Fig. 2.16(c) the median required processing time for the addition of a source

model element as a function of the number of restricted model elements matching

the affected constraint’s context (i.e., the number of constraint validations triggered

by the change) are depicted. As for Test I, both the validation time per constraint

matching element and the transformation time are steady at about 1 ms and reach a

maximum for large models of 5 ms. The total processing time of course increases with

the number of required validations. For the removal of a source model element, both

the processing times for validations per matching element and for the transformation

remain at under 1 ms and the maximum total processing time stays under 100 ms

(figures are omitted).

Test III: The observed processing times for the addition of an element to the source
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(a) Addition processing times (5 source models)

(b) Addition processing times (10 source models)

(c) Addition processing times for different effects on restricted model

Figure 2.16: Results for Test II

model are depicted in Fig. 2.17(a). The results for tests with both five and ten

concurrent restricted models are combined and the times are drawn as a function

of the number of constraint validations that become necessary after the change.

Note that the times for both transformation per restricted model and constraint

validation per matching element are nearly static at about 1 ms. As in Test II, the

total processing time is determined primarily by the number of required constraint
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(a) Addition processing times for different change effects

(b) Addition processing times for different restricted model sizes

Figure 2.17: Results for Test III

validations.

In Fig. 2.17(b), the processing times for constraint validation and transformation

are depicted as a function of the combined restricted model sizes.

For the removal of source model elements, the results observed for Test III are

similar to the results observed in Test I and Test II. That is, processing of source

model element removal is significantly faster that element addition as there is no

need for generating and validating constraints (figures are omitted).

2.6 Discussion

In this section we discuss the results of the presented case studies: the scalability,

the correctness, and possible threats to validity.
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2.6.1 Key Challenges Addressed

Let us briefly revisit the three key challenges we identified at the beginning of this

chapter and discuss how they are addressed in CDM by providing information to

designers instead of automating highly complex and situation-specific decisions.

As we have shown, CDM does not override model changes done by designers but

it updates constraints. In doing so, CDM ensures that decisions made by designers

are never lost.

In case of uncertainties, we have illustrated how CDM avoids premature design

decisions by generating and updating constraints to provide valuable information for

finding the most suitable target model instead of generating a correct but probably

not ideal target model.

By using CDM, bidirectional transformations can be replaced with unidirectional

transformations. This reduces scheduling issues, race-conditions, and merging is-

sues when handling concurrent model changes because the restricted models are not

changed automatically and thus also the order of constraint updates is not relevant.

2.6.2 Case Study Results

We demonstrated the feasibility of CDM by implementing a prototype tool. The

applicability was demonstrated by applying the approach to UML modeling projects.

The case study evaluated a range of small to large systems.

The observed transformation times remained nearly constant even when model

sizes increased significantly, which indicates that the core aspect of our approach

can be performed efficiently. The observed overall processing times (including con-

straint validation) show that even for large models our approach works efficiently.

The results demonstrate in a proof-of-concept manner that there exists at least one

consistency technology that supports CDM in a scalable manner.7

7 Note that the validation is not meant to demonstrate superior performance of the employed
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The case study was conducted with the same models that were previously used

for evaluating the employed consistency checker. The observed constraint validation

times indicate that times required for validating generated constraints are compara-

ble to those required for validating manually written constraints. Thus, generated

constraints do not necessarily impose a higher validation effort.

2.6.3 Correctness Aspects

Let us now discuss various aspects that may affect the correctness of our approach.

For traditional model transformations, errors in both the source models and the

applied rules lead to errors in the generated model. Such errors obviously affect CDM

also because through the likely involvement of humans during source model creation

and transformation rule writing, it is not possible to guarantee correct constraints

being generated and enforced. The correctness of the enforced constraints and the

provided user guidance is thus a factor of the correctness of: i) the source model,

ii) the transformation rules, iii) the transformation engine, and iv) the consistency

checker.

Even if invalid source models or transformation rules lead to incorrect constraints,

our approach has substantial benefits over generating a model directly: incorrect

results do not affect the restricted model directly.

Designers may inspect constraints that seem incorrect and may decide to ignore

them, meaning that incorrect or contradictory constraints do not prevent design-

ers from constructing the desired model. By tracing back the origin of generated

constraints (which is possible in model transformation and supported by CDM) de-

signers can also use faulty constraints to detect and report or fix errors in the source

model or the transformation rules [42].

consistency checker but only to demonstrate feasibility of CDM.
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2.6.4 Threats to Validity

Although it seems intuitive that decisions made by domain experts in situation with

very specific problems and with guidance are more trustworthy than automated

decisions based on generalized knowledge or heuristics, we have yet to show that

the quality of the resulting models is higher or that our approach leads to intended

target models quicker than traditional transformation. Additionally, we have not

investigated to which degree guidance and suggested options reduce the time needed

for design decisions or finding inconsistencies. However, those questions are not

specific for CDM but they apply to all approaches that focus on semi-automatic

fixing of inconsistencies.

In Section 2.2 we illustrated the application of CDM and assumed that transfor-

mation rules are executed incrementally. Even though there is significant progress

in terms of incremental execution of transformations for common languages such

as ATL or QVT, there are transformation languages for which such support is not

available. However, we have discussed in Section 2.2.4 that individual constraints

are structurally independent. This simplifies the implementation of incremental rule

execution dramatically as it allows tools to execute a transformation rule with a

given source model element in a sandbox-like environment (i.e., execute the transfor-

mation rule with a temporary and empty target model) and then add the resulting

constraint to the set of applied constraints. Note that the order of rule execution

does not matter. Moreover, if transformation rules are executed individually then

this also simplifies the backtracking later (i.e., if it is believed that a constraint is

incorrect).
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2.7 Related Work

Model Transformation is a very active field of research and several topics related to

our work have been discussed.

Comparison to Existing Constraint Generating Approaches. Let us now

discuss what separates the CDM approach from existing approaches that focus on

model transformations and rely on constraints.

The major difference between CDM and approaches such as, for example, the

ones presented by Büttner et al. [50] or Cabot et al. [51] is that the goals of these

approaches are different from those of CDM. While CDM helps dealing with uncer-

tainties and avoiding the generation of unintended target models, other approaches

typically generate constraints in order to do verification or validation of transforma-

tion rules through sophisticated reasoning over those transformation rules and target

models (e.g., derive an optimal order of execution for a set of transformation rules).

They derive target model conditions from the transformation rules directly through

a translation. Thus, they are typically not capable of dealing with domain-specific

semantics and uncertainties like those we have discussed in Section 2.1. For the trans-

formation in Listing 2.1, for example, those approaches may generate a constraint

that requires a Method with a specific name and a specific owner to be present in

the target model after the transformation was executed with a given Message. This

constraint ensures that the transformation rule behaves as expected. The constraint

may then be used in combination with constraints derived from other transformation

rules, for example to find logical contradictions within the transformation rule, to

find contradictions between rules, or to determine the required order of execution.

Note that when those constraints are used as input for reasoning engines or fixing ap-

proaches, the constraints are already based on an assumption that was made during

rule authoring to overcome an uncertainty (e.g., the desired location of the method)
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and that was incorporated in the transformation rule. With CDM, on the other

hand, a constraint that a method must be provided by the class would be generated

(i.e., a different transformation rule would be used), expressing the actually desired

condition without making assumptions. Thus, existing approaches that generate

constraints from rules are designed for different problems (e.g., ensuring syntactical

correctness of target models or checking validity of transformation rules). However,

those approaches are of course a valid choice for verifying and validating unam-

biguous transformations and may be used for verifying the transformations used for

CDM (e.g., to find out whether the applied transformations lead to contradictory

constraints).

Another approach related to CDM is proposed by Vallecillo et al. [68]. They

define Tracts, contracts between source and target models which include constraints.

Using those tracts, model transformation rules can be derived or existing transfor-

mation rules can be tested. While this approach is similar to CDM in that it focuses

on the intentions of the designer and allows for domain specific knowledge, it does

not address the issue of designers being forced to make premature decisions when

writing transformation rules. For example, it would identify the transformation rule

presented in Listing 2.1 as valid with respect to the target model constraints – the

solution it produces will always be valid as the required method is present in the

target model. However, the transformation rule still relies on assumptions and it

may produce unintended target models.

Another benefit of our approach is that it is generic. It can be used with arbitrary

models, transformation languages, constraint languages, and consistency checkers.

Existing approaches interpret rules and generate constraints for a given transforma-

tion language and are also strongly tailored to a constraint language, a consistency

checker, or a reasoning engine (e.g., [50, 51]).

Generally, CDM can be seen as a bridging technology between modeling and
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advanced approaches for model fixing that rely on the existence of constraints. What

makes CDM stand out from other approaches is that it allows designers to express

desired model conditions in a reusable way (i.e., as transformation rules) rather

than inferring those conditions from transformation rules in which assumptions have

already been made.

Model transformation and OCL constraints. Büttner et al. [69] discussed

various endogenous transformations of OCL constraints that are necessary when ei-

ther the constraint or the model it is based on change. We apply transformations to

automatically generate such constraints from a source model and, instead of trans-

forming the existing constraints, use incremental re-transformation to reflect model

changes. Simplifications of OCL constraints through transformations was also dis-

cussed by Giese and Larsson [70]. They defined transformation rules that could be

used with our approach to simplify the constraints that have been automatically

created and possibly make them faster to check and also easier to read. In [71],

Bajwa and Lee propose an approach to automatically generate OCL constraints by

transforming business rules specified in Semantics of Business Vocabulary and Busi-

ness Rules (SBVR) [72]. Our approach of course also supports business models as

constraint source. However, we have shown that the generation of constraints is a

valid option to reduce ambiguities and provide guidance in different domains.

Bidirectional transformation. Giese and Wagner [31] as well as Xiong et

al. [73] performed extensive research on bidirectional transformations and synchro-

nization in general. Interestingly, Xiong et al. define an "undo" operation after

model updates (i.e., reverting performed changes) to be an unwanted option for fix-

ing introduced inconsistencies because it would ignore the latest decisions made by

the designer [41]. Indeed, for automated fixing without human intervention making

such an assumption is necessary as otherwise a simple "undo" of the latest change

would typically be the best solution that removes all inconsistencies without any
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side effects (i.e., introducing new inconsistencies through fixing existing ones). How-

ever, a designer’s decisions can be wrong and therefore we believe that presenting the

"undo"-option in addition to other possible fixes is necessary to address this possibil-

ity. Regarding language support for bidirectional transformations, Sasano et al. [74]

developed a system to perform bidirectional transformations with ATL, and Stevens

[26] focused on bidirectionality for QVT. In general, we tackle the complexity of

bidirectional transformations by using unidirectional transformations that generate

constraints – without tailoring our approach to a specific transformation language

or specialized transformation engines, and without deriving constraints from target

model generating transformation rules. Updating one of the involved models then

changes its own consistency status and potentially lead to updates of constraints

on the other model. The involved models are synchronized if they are both free of

inconsistencies. As we have shown, the risk of overriding changes because of the

change processing order is eliminated as we only update constraints automatically

and the designer ultimately decides how the models should be adapted. Cicchetti

et al. [75] developed the bidirectional transformation language JTL that supports

non-bijective transformations and change propagation. JTL generates constraints

by translating user-defined transformation rule and it uses answer set programming

(ASP) to find models that match those constraints. The translation of transforma-

tion rules to ASP constraints can be interpreted as a transformation of those rules.

Thus JTL could be seen as an application of CDM chained with automatic model

finding where the user-defined transformation rules are used as source model to gen-

erate constraints through the execution of other transformation rules (i.e., rules that

capture the translation semantics).

Incrementality and execution speed of transformations. Jouault and Tisi

[32] proposed an approach to make ATL transformations incremental. They achieve

incrementality by using scopes built during OCL expression execution to determine
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which rules have to be re-executed after source model changes. We make use of

automatically created scopes in the same way to determine which constraints have

to be re-created in our prototype and also for finding constraints that have to be

re-validated by the consistency checker [43]. In [76], Tisi et al. propose the lazy

execution of transformations, which eliminates the need for an initial transformation

of the entire source model to speed up the process for large source models, which is

also the performance bottleneck of our prototype.

Design space effects of constraints. Saxena and Karsai [77] published a

MDE-based approach for design space exploration in which constraints are used to

describe invariants of valid models. Our approach can be used to generate constraints

for design space exploration algorithms. The source of these constraints may be the

metamodel to which the generated model must conform or also an already existing

partial model that is either provided by the designer as input for the exploration

algorithm or generated by the algorithm itself. Our approach also reduces the so-

lution space and provides guidance to transform an invalid solution to one that is

within the remaining solution space. Horváth and Varró [78] presented an approach

for design space exploration using a CSP-solver and dynamic constraints that may

change over time. Combined with CDM to generate and manage these constraints

automatically, their approach is suitable for finding out whether there actually are

restricted models for which all constraints are satisfied. Moreover, their approach

supports flexible constraints. That is, it can providing solutions even if contradictory

constraints that cannot be satisfied at the same time are used.

Finding domain design errors. Queralt and Teniente [79] presented an ap-

proach for finding conceptual errors in UML schemas and OCL constraints (e.g., a

schema from which some classes may never be instantiated without causing inconsis-

tencies). They transform UML class diagrams and OCL constraints to logic formulas

such that standard reasoning engines can be employed. The reasoning engine may
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then be used to find a sample instantiation of the schema which is consistent. In

contrast to the automatic inconsistency fixing approaches discussed in Section 2.3.2,

the generated solution is not a UML class diagram, but an object diagram which

conforms to the class diagram (i.e., they use the schema defined with UML as the

metamodel for the reasoning). As with the approaches discussed in Section 2.3.2,

CDM can be used for generating and updating the constraints which are used for

reasoning (i.e., it is an enabling technology).

2.8 Summary

In this chapter, we presented an incremental and generic approach that uses model

transformation to automatically generate and update constraints.

Based on constraints that are structurally independent of each other, we showed

that constraint validation does not require a fixed order of execution. We illustrated

how traditional transformation approaches produce consistent, albeit unintended

models that have to be fixed manually. By using constraints, designers are noti-

fied about existing inconsistencies and the importance of fixing them. We illustrated

how generated constraints enable user guidance (i.e., by using them to find possible

fixes) and encourage the use of domain-knowledge to solve specific modeling prob-

lems. Even though our approach reacts to source model changes, updates affected

constraints, and validates those constraints immediately, it does not necessarily en-

force any of the available fixes for inconsistencies automatically. This sacrifice of

automation allows us to tolerate inconsistencies – at least temporarily. However,

we also described how CDM can be used with automated inconsistency fixing ap-

proaches in certain situations where there are too many inconsistencies to fix them

manually. And we discussed how model transformation issues like ambiguity, rule-

scheduling, model merging, and bidirectionality can be addressed. In conclusion,

we believe this work contributes a novel complement to existing state-of-the-art on
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model transformation.

We validated the approach by developing a prototype implementation and used it

to conduct case studies in three different domains, demonstrating both the feasibility

and the broad applicability of CDM. Performance tests showed that our approach is

scalable and provides guidance for designers.

In the next chapter, we will investigate further issues, specificially in metamod-

eling, that can be addressed by using the principles of CDM.
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3

Co-evolution of Metamodels and Model
Constraints

In Model-Driven Development (MDD) [1], metamodels play a key role as they reflect

real-world domains and define the language of design models as well as the constraints

these models must satisfy. Over the past years, a trend has emerged that calls for

design tools with adaptable metamodels – to customize the tool to a particular dis-

cipline, domain, or even application under development. Domain-specific Languages

(DSLs) [10, 80] provide a set of modeling concepts tailored to fit a specific real-world

domain. Indeed, metamodels and DSLs must evolve continuously; for example, to

reflect changes of the domain or to meet new business needs. Refactorings that

improve a metamodel’s structure and usability are also common [81]. Nowadays, a

range of “flexible” design tools with adaptable metamodels are available to support

such scenarios (e.g., [62, 63, 82]).

Co-evolution of models denotes the process of concurrently evolving metamodels

and their design models – a process that is non trivial since inconsistent co-evolution

may cause models and metamodels to drift apart. Several incremental approaches

have been proposed to support this process (e.g., [83]).
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However, metamodels also impose constraints onto design models. When the

metamodels evolve, so must the constraints – a scenario that has been largely over-

looked so far. For example, the Unified Modeling Language (UML) [45] is supported

by hundreds of well-formedness rules and the community augmented these with even

more consistency rules. Moreover, UML Profiles, which may also include consistency

rules, are commonly used to extend the UML and adapt it to specific domains [84].

Modifying the UML metamodel thus impacts these constraints. Previously semanti-

cally and syntactically correct constraints may become incorrect after structural or

semantic metamodel changes; or new constraints may appear. It is crucial to ex-

tend the notion of co-evolution to include the continuous maintenance of constraints

such that only correct constraints are enforced on design models. Of course, it is

also crucial to have available a consistency checker that is not only able to react to

design model changes but also to metamodel/constraint changes. Generating and

adapting constraints incrementally as well as checking them incrementally are thus

pre-requisites to ensure that designers are always given instant and reliable feedback

on the validity of their modeling work.

State-of-the-art consistency checkers are commonly employed to validate con-

straints and determine whether a model is consistent with respect to its metamodel.

Most consistency checkers rely on a fixed set of constraints for performing the val-

idation [29, 43]. It is common to write these constraints manually, typically in a

standardized language such as the Object Constraint Language (OCL) [39]. Often,

constraints are also “hard-coded” into modeling tools. Although the automatic co-

evolution of metamodels and design models has become an active field of research,

the issue of co-evolving constraints is not well addressed. Incremental consistency

checkers typically do not support the live updating of constraints and little support

for updating outdated constraints is available.

This chapter, which is based on [85] and [17], describes an approach that han-
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dles the evolution of metamodels and performs the co-evolution of constraints. The

approach in principle supports arbitrary metamodels and models. It uses constraint

templates and a template engine to automatically and incrementally manage con-

straints based on atomic metamodel evolution steps (i.e., addition, deletion, and

modification of metamodel elements). This chapter also includes the in-depth illus-

tration and discussion of the approach and a prototype implementation (the Cross-

Layer Modeler (XLM) [64]). Moreover, we evaluated our approach by using the XLM

for automating the generation of constraints that ensure the structural integrity of

UML models and by performing sample evolutions of the UML metamodel. Tests

were performed on 21 large industrial UML models of up to 36,205 model elements.

While the UML is not the primary motivation for our approach (it changes occasion-

ally only), it is like any modeling language in that it must adhere to a metamodel

and imposes constraints. UML metamodel changes thus impose the same kind of

challenges. The fact that the UML language is far from trivial and we have available

large-scale, industrial models thus make it a very suitable environment to test the

scalability of our approach and the XLM tool. The results show that our approach

is correct and works efficiently even as model sizes increase.

3.1 Motivating Example – Component-based System

We use an excerpt of a simple metamodel, shown in Fig. 3.1(a), to illustrate our work.

The metamodel consists of two elements: Component and Communication. Every

Component can include an arbitrary number of sub-components and can directly

use an undefined number of other components. A Communication expresses a data

exchange from a source to at most one target component. Components can have

an arbitrary number of open communications (com).
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(a) Metamodel (b) Model

Figure 3.1: Metamodel and model of component-based system with constraints

3.1.1 Metametamodel

For building this metamodel, we used a simple metametamodel consisting of the

elements: Class, Reference, DerivedReference. References between classes are

drawn as arrows with an assigned name and a defined cardinality. Multiple references

can be combined to a single derived reference which we draw without cardinality

values and with dashed arrows to the references from which it is composed. For

example, a derived reference is used to retrieve the components that are involved in

a communication (inv).

3.1.2 Constraints

For MDD to be effective, it is crucial to work with valid models that conform to

their metamodels. That is, that such models adhere to the constraints specified in

the following sources:

I: Metamodel syntax. First, we use intuitive constraints that check the car-

dinality of references. For each reference, we create a constraint (e.g., R1 or R2 in

Fig. 3.1(a)) that ensures that every instance of the owning element is connected to

the specified number of elements in a model (e.g., every instance of Communication
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must be connected to exactly one Component instance through a connection named

source). We use the term connected in models to avoid ambiguity with references

in the metamodel. Connections are depicted as named arrows in model diagrams.

Constraints for references with unrestricted cardinalities (e.g., com) are not shown in

Fig. 3.1(a) for readability reasons. Note that common modeling tools (e.g., [12, 62])

that use the Eclipse Modeling Framework (EMF) [86] for example either do not de-

rive such constraints or have them “hard-coded”, meaning that changes cannot lead

to constraint updates which effectively disables automated co-evolution.

II: Metamodel semantics. Next, we create a constraint for the derived ref-

erence (e.g., DR1 in Fig. 3.1(a)) to ensure that instances of the owning element

are connected to all the elements that are reached through the aggregated references

(e.g., for every instance of Communication, all elements that are connected to it via

source and target must also be connected via inv). Note that our constraints make

use of OCL collection iterations even though they are invoked on single objects. The

issues arising because of the distinction between single and multi-object values in

OCL have been discussed and identified in literature as a problem especially dur-

ing evolution [69]. For the sake of generality, we use a consistency checker with an

OCL interpreter that allows collection operations being used with single objects by

performing the necessary conversions automatically.

III: Domain knowledge. While the first two kinds of constraints could be

generated automatically, constraints of the third type cannot be derived from the

metamodel automatically with traditional approaches. An example would be a con-

straint that restricts direct usage of components based on component hierarchies.

As depicted in Fig. 3.1(b), the metamodel from Fig. 3.1(a) is used to create a small

model of a calculator system. The Calculator component has two sub-components

that are used directly: Memory and Numeric. The Numeric component also uses

the component Memory. A Printer has three sub-components: Formatter, Queue,
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and Controller. It uses the Queue to store print jobs and informs the Controller,

which retrieves data from the Queue and runs the Formatter before printing. Finally,

there is an Output component to display information to the user. The Calculator

uses a Communication element called ResultComm to send its results to the Printer

and the Output components.

As indicated by the encircled area in Fig. 3.1(b), the two target connections

of ResultComm are causing an inconsistency because only one target is allowed

according to the metamodel. Note that any consistency checking approach could

detect inconsistencies in the model according to the constraints we defined above.

3.1.3 Incremental Consistency Checking

As the model size increases, so does the effort to check its consistency. Checking

consistency in an entire model can easily become a time consuming task. Incremen-

tal consistency checking addresses this limitation by looking only at a subset of an

entire model, namely the elements that change as a model evolves [87]. This set of

elements can be either directly observed or calculated from differences between model

versions [88, 43]. The existing approach automatically defines constraint instances

that validate whether specific model elements violate a given constraint [87]. The

change impact scope of a constraint instance is the set of model elements that are

used for calculating the constraint instance’s validation result which are also com-

puted automatically. For example, Fig. 3.1(b) shows a constraint instance of the

Communication metaclass constraint R1 that requires communications to have ex-

actly one target. The scope of this constraint instance consists of the two elements

that are reached through the target reference to Printer and Output. Changes

falling within scope of a constraint instance, like removing a target, would lead to a

re-validation of the constraint instance. The Model/Analyzer automatically creates,

re-evaluates, and destroys constraint instances according to changes in the model in
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Figure 3.2: The evolved metamodel

Fig. 3.1(b). However, if the metamodel were to change, consistency checkers would

continue to validate the now-potentially-outdated design rules.

3.1.4 Co-Evolution Examples

Let us consider what happens when a metamodel changes. For instance, if the

number of maximum targets of a Communication rises from 1 to 100 because new

technologies allow multicasting of messages between components. Additionally, a

new derived reference all is introduced to combine the sub and use references of a

Component. These two changes are encircled with dashed lines in Fig. 3.2. These

changes have the following consequences:

• Constraint R1 becomes incorrect. The upper bound checked by R1 (1), is no

longer equal to the actual upper bound value of the reference (100).

• An additional constraint is needed for the new derived reference all.

In the first case, R1 must be adapted by replacing the upper limit value 1 with

literal 100. Without this adaptation, the corresponding constraint instance, circled

in Fig. 3.1(b), would still incorrectly try to enforce an upper bound of 1. In the sec-

ond case, the inconsistency that neither Calculator nor Printer have the required
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Figure 3.3: Example of steps performed during template definition, instantiation,
and change management

connection all in our model is missed. To address this problem, a constraint that

checks the derived reference all needs to be added.

A common way of dealing with co-evolution is to manually re-write the constraints

after performing a metamodel modification. Although this approach can work in our

example because of its small size and simple constraints, manually identifying and

adapting affected constraints in more complex models is both time consuming and

error-prone.

3.2 Constraint Templates and Template Engine

We propose the use of constraint templates to automate the co-evolution of models

and their constraints. These templates are based on the metamodel and constraints

we want to evaluate. Basically, templates contain the static aspects that constraints

have in common (e.g., fragments of an OCL constraint string) and define the points

of variability. As models evolve, the templates are filled with specific data – to

reflect the model evolution – and instantiated to automatically generate or update

the constraints.

Next, we illustrate how constraint templates can be derived and how they are
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Table 3.1: Template structure

Instantiation context (IC)
Abstract constraint expression (ACE)
Variable definition (VD)
Instantiation information (II)
Data extraction expressions (DEE)

managed by a template engine to automate constraint generation and updating.

3.2.1 Template Definition

Templates are written manually by metamodel authors who are also in charge of

maintaining and evolving metamodels. Before discussing the authoring process in

detail, we discuss the structure of a template, as shown in Table 3.1, and the in-

formation it requires. The instantiation context (IC) defines for which elements, or

combinations thereof, a template should be instantiated. The IC is thus an element

of the metametamodel. Although we use a simple metametamodel in this paper

for illustration purposes, the approach is generic and supports arbitrary metameta-

models. The abstract constraint expression (ACE) is used to define the family of

constraints generated from the template. A constraint family consists of constraints

that share some static aspects (e.g., the structure) and have some variable parts that

differ for each constraint. Thus, the ACE captures the static parts of the constraint

family and also identifies the locations of variability which are also defined explicitly

in the variable definition (VD). The VD declares which parts of the ACE are inter-

preted as variables. To bind specific values to these variables, data has to be read

from specific elements that are available when the template is instantiated. These

elements are specified in the instantiation information (II). How the values for the

variables are extracted from the elements is declared in data extraction expressions

(DEE). We use OCL statements for the DEEs in this paper as it is a well known

language for reading information from (meta)model elements. However, other lan-
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guages and techniques may be used in specific implementations of our approach. Let

us now show how we can write a template T1 for the constraint family of R1 and

R2.

Template for cardinalities.

The top-right section “Template definition” in Fig. 3.3 illustrates the steps we per-

form next. The remainder of the figure depicts template instantiation and change

management processes we discuss later. Template T1, shown in Table 3.2, creates a

constraint for every instance of the metametamodel elementReference (see Section

3.1.1) in a metamodel, for example when the reference target is added to the class

Communication during the initial modeling of our sample metamodel. Therefore,

we define the IC of our template to be <Reference>. This means that we provide

an instance of metametamodel element Reference to the template in order to cre-

ate a new constraint. Note that templates are reusable for other metamodels that

conform to the same metametamodel (e.g., other metamodels that are instances of

the sample metamodel described in Section 3.1.1). We define the ACE by using the

desired expression of one sample constraint of the constraint family (e.g., an OCL

statement) and replacing all concrete values that are specific for a single instance

with variables. In our example, we take the expression from the constraint R1 for

the reference Communication.target in Fig. 3.1(a):

context Communication inv:

self.target->size()>=0 and

self.target->size()<=1

And replace the two values 0 and 1 with MIN and MAX for the minimum and maximum

number of connected elements, the context Communication with C for the checked

class, and the two occurrences of target with R for the used reference. The result

is the abstract constraint expression:
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Table 3.2: Definition of template T1

IC: <Reference>
ACE: context C inv:

self.R->size()>=MIN and
self.R->size()<=MAX

VD: <C, R, MIN, MAX>
II: <Reference r>
DEE: <C:r.owner.name,

R:r.name,
MIN:r.min,
MAX:r.max>

context C inv:

self.R->size()>=MIN and

self.R->size()<=MAX

as defined in Table 3.2 with the variable parts (VD) being <C, R, MIN, MAX>. As

shown in Fig. 3.3, the instantiation information of T1 is <Reference r>.

Desired constraints are built by reading the min, max, and name values of the

passed reference r as well as the name of the class that owns the reference owner.name.

The data extraction expressions can then be written as r.min, r.max, r.name and

r.owner.name. In the DEEs, the variable to which the read data should be assigned

is written before each DEE followed by a colon. Note that because of the single

element instantiation context (i.e., we instantiate the template for every instance of

that type), only one element is available as instantiation information, making both

the II itself and the use of a prefix (i.e., “r”) for the DEEs redundant. However, if

more complex patterns were used in the IC, the II would contain more than one

element from which DEEs read data. For example, we could have used the pattern

<Class,Reference> as IC for T1 to generate a constraint for each reference that is

actually added to a class. Then, distinguishing the class and the reference in the II

and using prefixes in DEEs becomes necessary. We have now completed the template

definition for T1.
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Table 3.3: Definition of template T2

IC: <DerivedReference>
ACE: context C inv:

self.DR-> includesAll(
REFS->collect(x|self.{x}))

VD: <C, DR, REFS>
II: <DerivedReference dr>
DEE: <C:dr.owner.name,

DR:dr.name,
REFS:dr.refs->collect(name)>

Template for derived references.

We use the same process to write template T2, as shown in Table 3.3, based on

the constraint DR1 as an example for the constraint family that checks derived

references.

As a simplification, we replaced the set of references (Set{self.source,

self.target}->flatten()) from DR1 in Fig. 3.1(a) with a construct

(collect(x|self.{x})) that allows us to aggregate the results of different refer-

ences – based on a set of reference names – dynamically. When the template is

instantiated for the derived reference Communication.inv, the resulting constraint

is:

context Communication inv:

self.inv->includesAll(

Set{“target”, “source”}->collect(x|self.{x}))

The expression Set{“target”, “source”}->collect(x| self.{x}) then collects

all the elements returned by the expressions self.target and self.source.

Now that the templates T1 and T2 are written, let us discuss how templates are

instantiated automatically to generate constraints.
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3.2.2 Template Instantiation

To enable a template, it is passed to the template engine that observes a specific

model and handles template instantiation and updating. We will now discuss how

the template T1 for checking reference cardinalities is instantiated when it is applied

to the metamodel in Fig. 3.1(a).

For each occurence of the IC <Reference>, the template is instantiated once. In

Fig. 3.1(a) there are five references and thus T1 is instantiated five times. How-

ever, we focus on a detailed discussion of the instantiation process for the reference

Communication.target, as illustrated in the bottom box “Template instantiation”

in Fig. 3.3. The process starts with the instantiation information (1). In this case,

it containts the reference target. The data extraction expressions are applied to the

element to retrieve the names (i.e., Communication and target) and the cardinality

values (i.e., 0 and 1). This is shown in Fig. 3.3(2). In order to allow later updates of

the generated constraints, the constraint scope is built automatically during the ex-

ecution of the DEEs in step (2). This scope constains all elements that are accessed

by the DEEs. The scope for the constraint R1 is therefore <target.owner.name,

target.name, target.min, target.max>. The variables in the ACE are then re-

placed with these values to generate the constraint (3).

After applying our templates T1 and T2 to the initial version of our example

metamodel from Fig. 3.1(a), template T1 was instantiated once for every reference

(i.e., five times in total), template T2 was instantiated once to generate the constraint

for the only derived reference inv in the metamodel.

At this point we have shown how templates are written and how they are in-

stantiated. We have seen that a template captures the static and the variable parts

of a family of constraints. Typically, a single constraint template is written for ev-

ery constraint family in the system. Combining templates is only necessary in the
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rare cases where different constraint families should be merged into one. If such a

merge is required, template authors can build the corresponding template by writing

a template for the merged constraint families. Next, we will illustrate how automatic

constraint updates are performed.

3.2.3 Change Management

In Section 3.1 we discussed the effects of two metamodel evolutions on the correctness

of constraints. We will now present how such metamodel evolutions are handled

automatically by the template engine.

Metamodel evolution.

After every atomic modification of the metamodel (i.e., the addition, deletion, or

modification of a metamodel element), the template engine is notified about the per-

formed operation, as shown in the top-left box “Change management” in Fig. 3.3. The

change notification is operation-based and includes information about the changed

metamodel elements which the engine uses to determine the actions that are required

to adapt the set of current constraints to the new version of the metamodel.

After the addition of metamodel elements, the engine looks for templates that can

be instantiated (i.e., the types of the added model elements match the instantiation

context). When metamodel elements are deleted, constraints that are based on

these elements (i.e., their scope contains a removed element) are also removed. A

metamodel element modification triggers the update process and the template engine

uses the modified model element and the constraint scopes to calculate the set of

affected constraints that need updating.

As an example, consider the metamodel version shown in Fig. 3.2. We first

replaced the upper bound value 1 of the constraint R1 with the value 100. The

change notification that is passed to the engine indicates that the metamodel element
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target.max was modified. Since the scope of the constraint R1 contains the modified

element, as discussed above, the engine detects that this constraint is affected by

the modification. Because there are no other constraints that include the modified

model element in their scope, R1 is identified as the only constraint that needs to be

updated.

The update is performed by executing the data extraction expressions that added

the modified metamodel element to the constraint’s scope, as depicted by step (*)

in Fig. 3.3, and replacing the outdated values in the constraint expression with

the newly retrieved ones. In our example, target.max now returns the value 100.

Replacing the old value results in the new constraint expression

context Communication inv:

self.target->size()>=0 and

self.target->size()<=100

And the constraint co-evolution was successfully completed. Note that currently we

delete the existing constraint and re-instantiate the template to generate an updated

constraint. The update of single values or logical fragments in the existing constraints

will be addressed in future work.

The second metamodel modification we have to consider is the addition of the

new derived reference all to Component. When the template engine is informed

that a derived reference has been added, it automatically discovers that this element

matches the instantiation context of template T2. Therefore, template instantiation

is triggered and the instantiation information <all> is used by the data retrieval

expressions to retrieve the values that are then used to replace the variables in T2

in order to produce the required constraint.

Finally, let us consider what would happen if we remove the derived reference

Communication.inv in another evolution step. In that case, the template engine
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would identify DR1 as the only constraint that includes the removed element in its

scope. Therefore, it would remove the no longer needed constraint DR1 from the

metamodel automatically.

Model evolution.

As we have discussed in Section 3.1.3, changes of a model typically lead to a re-

validation of affected constraint instances. With our approach, such changes can

affect the scopes of generated constraint instances. For example, imagine the addition

of a new component as a target of ResultComm in Fig. 3.1(b). Indeed, this may

affect the consistency status of a constraint instance of R1. However, since such

changes are handled entirely by the employed consistency checker, we omit a detailed

discussion here and refer to [43].

3.3 Case Study – UML Metamodel Evolution

We evaluated the applicability and the performance of our approach with a case

study that was done using a prototype implementation.

3.3.1 Prototype Implementation

For the evaluation, we developed the Cross-Layer Modeler (XLM) [64]. This tool

allows working with models and their metamodels at the same time. We used some

of the concepts of the Level-agnostic Modeling Language (LML) [89], a modeling

language explicitly designed for multilevel modeling, to implement a model that is

capable of dealing with an arbitrary number of metalevels. The XLM leveraged

from our previous work on the Model/Analyzer [43, 87] which supports efficient and

scalable incremental consistency checking of arbitrary design constraints.

We extended the Model/Analyzer by adding an incremental template engine and

the corresponding infrastructure to support the incremental creation, deletion and
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modification of constraints (based on meta model changes) which the Model/An-

alyzer then incrementally validates against model changes. Ten sample templates

from different domains are available at the tool website http://www.jku.at/sea/

content/e139529/e126342/e157573.

3.3.2 Metamodel and Models

As our case study, we used templates and the Cross-Layer Modeler tool to automate

constraint generation and updates for the UML. On the first glance, the UML meta

model may not appear to be an ideal choice because it is rarely used for co-evolution.

Nonetheless, for measuring the performance of our approach the UML is as suited

as any meta model. The UML metamodel is clearly a sophisticated and complex

metamodel for defining various types of diagrams related to object-oriented software

engineering artifacts. And it is also very large (i.e., the UML metamodel was given

as Ecore model which contained 6583 model elements). If our approach scales for

UML model/meta-model evolution then this should be convincing. Additionally,

numerous industrial software models are available [44]. For this case study we used

the UML metamodel and industrial UML models with quite diverse characteristics

from [44].

3.3.3 Performance Evaluation

We used templates to automatically create constraints that check the structural

integrity of UML model elements (e.g., modeled classes). Structural integrity is given

if a model element provides the structural features as defined in the UML metamodel.

Our constraints are based on the ECore metamodel and check the number of assigned

elements as well as the assigned elements’ types for every reference and attribute in

the UML (e.g., every instance of NamedElement must have exactly one String object

assigned as its name). The according templates are shown in Table 3.5 and Table ??.
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Table 3.4: Template for UML references

IC: <EReference>
ACE: <context NAME inv:

self.REFERENCE->size()>=MIN and
self.REFERENCE->size<=MAX and
self.REFERENCE->forAll(e|e instanceof TYPE)>

VD: <NAME, REFERENCE, MIN, MAX, TYPE»
II: <EReference r>
DEE: <NAME:r.owner.name,

REFERENCE:r.name,
MIN:r.lowerBound,
MAX:r.upperBound,
TYPE:r.eType»

Table 3.5: Template for UML attributes

IC: <EAttribute>
ACE: <context NAME inv:

self.ATTRIBUTE->size()>=MIN and
self.ATTRIBUTE->size<=MAX and
self.ATTRIBUTE->forAll(e|e instanceof TYPE)>

VD: <NAME, ATTRIBUTE, MIN, MAX, TYPE»
II: <EAttribute a>
DEE: <NAME:a.owner.name,

ATTRIBUTE:a.name,
MIN:a.lowerBound,
MAX:a.upperBound,
TYPE:a.eType»

Every test was performed 100 times on an Intel Core i5-650 machine with 8GB of

memory running Windows 7 Professional. The median and average values were used

for analysis. We classify the changes in our study in three categories.

Category I. Metamodel evolution.

Different metamodel modifications and common refactorings have been discussed

in literature [37, 90, 83, 91, 92, 93]. During most common metamodel evolutions,

references or attributes are added, removed, or are modified (e.g., the cardinality of

an attribute is changed or an attribute is moved to another class). Therefore, we

performed these kinds of evolutions with the UML metamodel. From this point on
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Figure 3.4: Metamodel evolutions

we will use the term property for references and attributes alike.

Scenario 1. Add new property. In the first scenario, a new property was added to

every single element of the UML metamodel, which required the generation of a new

constraint (as we discussed in Section 3.1.4 where we added a new derived reference to

our sample metamodel). We investigated the total time required for performing the

metamodel change, the required co-evolutions and the validation of the model with

the new constraint. Note that for our statistics we only considered those changes

that created constraints that could actually be validated with at least one model

element (e.g., we ignored the addition of a new reference to UseCase if the model did

not include any use cases). Fig. 3.4 shows the required processing times for changes

that affected different numbers of constraint instances. 99% of all modifications

took less than 166 ms to finish and only 0.15% of all performed changes took more

than 500 ms. On average, changes took 12.5 ms and the generated constraint was

validated with 201 constraint instances in the model. For the addition of elements in

this test we observed a Pearson correlation coefficient of 0.845 between the required

time and the number of required validations.

In Fig. 3.5, the median total processing times for different model sizes are de-

picted. Additionally, the times required for constraint management only (e.g., trans-

formation of constraints without validation) and constraint validation per affected

element (i.e., per element on which a constraint had to be re-validated) are shown.
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Figure 3.5: Metamodel element addition processing times

Not surprisingly, the time required for constraint management only is steady for all

restricted models, regardless of their size. The correlation between T and the model

size S, P pT, Sq was 0.099, which also indicates that the processing time strongly

depends on the validation effort needed for the new constraint and that it is inde-

pendent from the model size.

For constraint validation, on the other hand, we observed that the total required

time increases slightly with the restricted model size. Note that this is based on the

fact that the generated constraints have to be validated not only one time, but once

for every restricted model element that matches the constraint’s context (e.g., all

Class instances) and larger restricted models typically have higher numbers of those

matching elements. Thus, the processing time for a specific metamodel change does

not depend on the model size, but primarily on the model characteristics. Note that

the spikes in the solid lines showing the total processing times in Fig. 3.5 are con-

sistent with the average numbers of constraint-matching elements in the respective

restricted models shown in Fig. 3.6. As the dashed line in Fig. 3.5 also indicates, the

time required for constraint validation per validated element is nearly unaffected by

the model size.

The median total validation time for a restricted model of just under 10,000 model

elements was still below 500 ms for a source model change that required the constraint
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Figure 3.6: Average number of matching restricted model elements per constraint

Figure 3.7: Metamodel element removal processing times

to be validated for an average of 200 different elements. During the transformation,

data from 107 different metamodel elements was processed on average per generated

constraint (i.e., implying that the transformations were far from trivial).

Scenario 2. Remove existing property. In the second scenario, each test run

started with the unmodified UML metamodel and exactly one property was removed,

meaning that exactly one constraint became obsolete and was removed from the

consistency checker. Again, only changes of metamodel elements that were actually

used in the model were captured. 99% of all modification took less than 38.5 ms.

Only 0.1% of the modifications took longer than 250 ms. On average, element removal

took 4.5 ms and 202 constraint instances were removed with the obsolete constraint.

Fig. 3.4 shows that property removal is always faster than addition because there is

no need for validating any constraint instances.

In Fig. 3.7, the total processing times for handling the removal of a metamodel el-
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ement are depicted for different model sizes. Again, note that the time for constraint

management (i.e., removing a constraint) is not affected by the model size. The time

for validation per affected element (i.e., the removal of the consistency result for an

element) is also stable. The total processing time, as discussed already in Scenario 1,

does increase with the number of affected model elements.

Scenario 3. Modify existing property. For these tests, the cardinality as well as the

name of every existing property in the UML were changed. 99% of the modification

that caused an update of actually validated constraints were processed in less than

180 ms and 0.1% took more than 1,000 ms. For the modification of elements we

observed a correlation coefficient of 0.734 between the required processing time and

the number of validations.

Category II. Model evolution.

The incremental consistency checker that is used by the Cross-Layer Modeler, the

Model/Analyzer, is highly scalable [44]. We previously evaluated the approach on 34

models with model sizes of up to 162,237 model elements and 24 types of consistency

rules (constraints). Empirical evaluation showed that the consistency checking part

requires only 1.4ms to re-evaluate the consistency of the model after a change for

typical UML consistency and well-formedness constraints [48]. The data indicates

that the additional change processing infrastructure does not impose a significant

performance penalty.

Category III. Template addition and removal.

Even though adding, removing, or changing a template is a task performed less often

than metamodel evolutions, we still investigated this aspect. Since the addition of a

new template requires a full scan of the metamodel to create all possible constraints

and a complete initial validation of the model we expected this task to be more
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Figure 3.8: Template addition/removal

time consuming than processing changes incrementally. The processing times for the

addition and removal of the templates we used in Category I to the UML metamodel

that caused the generation or removal of different numbers of constraint instances

are shown in Fig. 3.8. Adding a template took less than 5,700ms in 90% of our tests,

in only 8% of the tests it took more than 10 s. On average, the addition of a template

took 2,818ms and created constraints that were validated 31,936 times. Removing

a template does not require validations of constraints, thus this task is performed

in less than 1,600 ms in 90% of our tests. Only 5% of template removals take more

than 3 s.

Evaluation summary.

The results of the representative metamodel evolutions clearly indicate that our ap-

proach is applicable to large and complex metamodels and that it is fast enough

to deliver instant feedback about model consistency after metamodel changes. Pro-

cessing changes that occur frequently during early development phases takes only

milliseconds with our approach in most cases and even the worst case values are ac-

ceptable considering the fact that they were still below 16s and were reached in less

than 1% of all changes. Although changing templates is slightly more expensive be-

cause of the inevitable processing of the entire model, the values are still acceptable

for a rarely performed task.

80



3.3.4 Alternative Realization

In this chapter, we have shown how the use of templates allows the generation of

constraints from metamodels in an efficient way. Moreover, we have illustrated that

creating a template only requires knowledge of the desired constraints and variable

information.

To illustrate that the constraint management process discussed in this chapter is

an application of the concepts introduced in Chapter 2, we also want to provide a set

of traditional model transformation rules and helper functions that can be applied

incrementally to generate constraints that check for structural correctness.

The UML metamodel is defined with the Meta-Object Facility (MOF) [94]. The

elements available in UML are modeled as instances of the Ecore type EClass. Thus,

it is possible to define a single transformation that uses EClass instances to generate

constraints for the corresponding UML elements. The rule is shown in Listing 3.1

(lines 1–9). For a given EClass, which must not be abstract or an interface, it

generates a constraint that is validated for all instances of the defined UML meta-

model element (e.g., an EClass instance with the name Message is transformed

to a constraint that checks all instances of Message in a UML model). Generat-

ing the invariants for the model elements is done in two separate helper functions

called generateAttributeInvariants and generateReferenceInvariants for the

EAttribute and EReference instances, respectively, belonging to the EClass either

directly or through inheritance.

Function generateAttributeInvariants is shown in Listing 3.1 (lines 11–17).

It takes as input an ordered set of attributes and recursively generates the invariant

string by calling the helper generateAttributeInvariant with the first available

attribute and itself with the remaining set of attributes.

For individual attributes, the helper generateAttributeInvariant only creates
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1 rule EC
2 from
3 s : MetaModel ! EClass (
4 not s . i sAbs t r a c t and not s . i s I n t e r f a c e )
5 to
6 t : ConstraintModel ! Constra int (
7 context <́ s . name ;
8 inv <́ g ene r a t eAt t r i bu t e Inva r i an t s ( s . eA l lAt t r ibute s >́asOrderedSet ( ) ) + " and "

+ gene ra t eRe f e r enc e Inva r i an t s ( e . a l lRe f e r en c e s >́asOrderedSet ( ) ) ;
9 )

10
11 helper def gene r a t eAt t r i bu t e Inva r i an t s ( s : OrderedSet ( EAttr ibute ) ) : S t r ing =
12 i f s >́s i z e ( )=0
13 then
14 " true "
15 else
16 l e t x=s >́ f i r s t ( ) in g ene ra t eAt t r i bu t e Inva r i an t (x ) + " and " +

gene ra t eAt t r i bu t e Inva r i an t s ( s´x )
17 endif
18
19 helper def gene ra t eAt t r i bu t e Inva r i an t ( s : EAttr ibute ) : S t r ing = card ina l i tyS ta t ement ( s .

upperBound , s . lowerBound , s . name)
20
21 helper def ca rd ina l i t yS ta t ement ( l : Integer , u : Integer , n : S t r ing ) : S t r ing =
22 i f ( l=0 and u=´1) or ( l=0 and u=1)
23 then
24 " true "
25 else
26 i f l=1 and u=1
27 then
28 " s e l f ."+n+"<>nu l l "
29 else
30 i f l=0
31 then
32 " s e l f ."+n+"́ >s i z e ( )<="+u
33 else
34 i f u=´1
35 " s e l f ."+n+"́ >s i z e ( )>="+l
36 else
37 " s e l f ."+n+"́ >s i z e ( )>="+l+"and s e l f ."+n+"́ >s i z e ( )<="+u
38 endif
39 endif
40 endif
41 endif
42
43 helper def gene ra t eRe f e r enc e Inva r i an t s ( s : OrderedSet ( EReference ) ) : S t r ing =
44 i f s >́s i z e ( )=0
45 then
46 " true "
47 else
48 l e t x=s >́ f i r s t ( ) in gene ra t eRe f e r ence Inva r i an t ( x ) + " and " +

gene ra t eRe f e r enc e Inva r i an t s ( s´x )
49 endif
50
51 helper def gene ra t eRe f e r ence Inva r i an t ( s : EReference ) : S t r ing =
52 ca rd ina l i tyS ta t ement ( s . upperBound , s . lowerBound , s . name) + " and " +

oppos i teStatement ( s , s . oppos i t e )

Listing 3.1: Transformation rule and helper functions to generate constraints for
UML metamodel types
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a statement for checking cardinality by calling the helper cardinalityStatement,

as shown in Listing 3.1 (line 19).

The helper cardinalityStatement generates invariants based on an associations

lower and upper bounds, as shown in Listing 3.1 (lines 21–41). For unbounded as-

sociations (i.e., [0..1] for single-valued and [0..*] for multi-valued associations) the

helper simply returns "true", for bounded associations the helper returns statements

to check that an element provides the correct number of results for the given associ-

ation.

Function generateReferenceInvariants, as shown in Listing 3.1 (lines 43–49),

is a recursive helper similar to that for attributes, thus we omit a detailed discussion

for space reasons.

To generate the invariants for an individual reference, the helper

generateReferenceInvariant, shown in Listing 3.1 (lines 51–52), not only

generates a cardinality statement, as it is done for attributes, but it also generates

semantic invariants that check the correct implementation of opposite references.

The latter is done through the helper oppositeStatement, which is shown in

Listing 3.2.

Since OCL handles single-valued and multi-valued fields differently, the statement

that checks the presence of opposite references must distinguish between different

cardinalities for both the source and the opposite reference.

3.3.5 Threats to Validity

Let us now discuss possible threats to the validity of the presented approach. First

and foremost, the validation is based on a single metamodel only (i.e., UML). There-

fore, the obtained results are only valid for the performed UML evolution and cannot

be generalized. However, the UML was selected as the subject for the case study

for two major reasons: i) the UML is a complex metamodel with hundreds of model
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1 helper def oppos i teStatement (x : EReference , y : EReference ) : S t r ing =
2 i f y=nu l l
3 then
4 " true "
5 else
6 i f x . upperBound=1
7 then
8 i f y . upperBound=1
9 then

10 " s e l f ."+x . name+"."+y . name+"=s e l f "
11 else
12 " s e l f ."+x . name+"."+y . name"+"́ >in c l ud e s ( s e l f ) "
13 endif
14 else
15 i f y . upperBound=1
16 then
17 " s e l f ."+x . name+"́ >f o rA l l ( z | z ."+y . name+"=s e l f ) "
18 else
19 " s e l f ."+x . name+"́ >f o rA l l ( z | z ."+y . name+"́ >in c l ud e s ( s e l f ) ) "
20 endif
21 endif
22 endif

Listing 3.2: Helper function oppositeStatement

elements available and numerous interdependencies, and ii) UML models are among

the most popular models in terms of industrial use. Thus, our case study is based on

a well-established and rather complex metamodel that is used in industry. Moreover,

the set of performed changes does include the atomic changes involved in complex

metamodel refactorings. Although the observed results cannot be generalized, they

provide strong evidence that our approach scales for typical domain-specific lan-

guages.

Another possible threat to validity is the correctness of constraint generation and

updating. Our prototype implementation uses EMF-based models and metamod-

els, and employs the Model/Analyzer consistency checker. Moreover, it relies on a

standard OCL interpreter to read information for template instantiation and builds

the scopes using technologies from the well tested Model/Analyzer framework. The

mechanisms used for triggering template instantiation and updating are also based

on that framework. Therefore, we argue that our implementation works correctly

given the existing technologies employed return correct results. However, we also

performed systematic unit testing of the implementation to ensure correct behav-
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ior. Unit testing was also used to ensure the correct behavior of the implementation

during the case study – we did not observe any cases where our implementation

produced unexpected or unintended results (e.g., incorrect constraints).

3.4 Related Work

There has been an extensive research activity in models and their evolution. Here

we focused on those closest to our work and grouped them in two themes.

Metamodel and model (co-)evolution. The efficient, and ideally automated,

(tool-)support for metamodel evolution and the corresponding co-evolution of con-

forming models was identified by Mens et al. in 2005 as one of the major challenges

in software evolution [27]. Since then, various approaches have been proposed to

deal with this challenge. Wachsmuth addresses the issue of metamodel changes by

describing them as transformational adaptations that are performed stepwise instead

of big, manually performed ad hoc changes [93]. Changes to the metamodel become

traceable and can be qualified according to semantics- or instance-preservation. He

further proposes the use of transformation patterns that are instantiated with meta-

model transformations to create co-transformations for models. Cicchetti et al. clas-

sify possible metamodel changes and decompose differences between model versions

into sets of changes of the same modification-class [95]. They identify possible de-

pendencies that can occur between different kinds of modifications and provide an

approach to handle these dependencies and to automate model co-evolution.

Herrmannsdoerfer et al. also classified coupled metamodel changes and inves-

tigated how far different adaptations are automatable [96]. One aspect that these

approaches have in common is that they are based on decomposing evolution steps

into atomic modification for deriving co-adaptations. Our approach is also based on

atomic modifications that are handled individually to perform necessary adaptations

incrementally. However, we do not try to automate co-evolution of metamodels and
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models in the first place. Instead, the co-evolution of metamodels and constraints

enables tool users to perform adaptations of a model with guidance based on specific

constraints and their own domain knowledge.

In terms of constraint co-evolution, Büttner et al. discuss various metamodel

modifications and how they affected constraints [69]. They describe how OCL ex-

pressions can be transformed to reflect metamodel evolution. We encountered some

of the issues they identified during the evolution of our running example, for example

the transition from single-object to collection values and vice versa because of mul-

tiplicity changes which is handled automatically in our prototype implementation.

Flexible and multilevel modeling. Atkinson and Kühne identified several issues

in the field of multilevel (meta-)modeling, namely the so-called shallow instantiation

of the UML [9] that forced us to use a graph-oriented model in XLM. They discussed

different approaches to overcome these issues like the concept of deep instantiation

where instances can be types at the same time; an approach we used in our tool.

Ossher et al. lately presented the BITKit tool [63] that allows domain-agnostic

modeling and on-the-fly assignment of visual notations to dynamically defined do-

main types. This approach is also implemented in our tool where the type of a

model element can be changed at any time. Generally, our approach can be used

with multilevel modeling tools, which typically do not support automatic consistency

checking, and supports constraint templates that are based on arbitrary metalevels.

3.5 Summary

This chapter presented an approach that is based on the principles of CDM and uses

constraint templates and an automated template engine to address the issue of co-

evolving metamodels and constraints. We illustrated how constraint templates can

be written and constraints are generated from them. Moreover, we discussed how

automatic co-evolution of constraints is achieved and developed a prototype imple-
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mentation. We performed a case study with UML as an example of a sophisticated

metamodel and 21 industrial UML models that clearly showed that our approach is

applicable for complex metamodels. The approach is scalable and processing times

for co-evolution are primarily affected by the number of required validations after

constraint generation or update.
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4

Incremental Safe Configuration
for Software Product Lines

Software Product Lines (SPLs) [97] have become more common in recent years as

they foster and support software reuse, enabling quicker development of products.

Individual units of functionality are commonly bundled in features [98]. The func-

tionality shared between all products as well as the possible points of variation (i.e.,

product variability) are defined in feature models that describe how features are re-

lated and how they can be combined. From feature models, products can easily

be configured by selecting the features a product should provide. Based on such

a selection, assets associated with the selected features are combined to construct

products that can be delivered to customers. For software product lines in particular,

those assets typically consist of source code, test scripts, or software models that are

combined – transformed to code in the case of models – and compiled.

Although the SPL concepts seem to be straightforward to implement, several

common challenges have been identified [99]. One of the biggest threats are errors in

a feature model or the traceability between features and the assets that implement

them. Such errors may lead to products that are correct with respect to the feature
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Figure 4.1: Overview of safe configuration approach

model but that cannot be compiled because of – just to name one example – missing

files. Hence, checking the correctness of products is essential for successfully using

SPLs [100].

In practice, a product line is likely to change as new functionality is added over

time, changing both the available features and the set of available assets [101]. For

example, source code or design model refactorings are common tasks that lead to

changes in underlying assets. Additionally, customer requirements often cannot be

fully foreseen by product line designers and domain analysts because of the large

number of features, their interactions and constraints, or market changes. Thus,

customers may demand products that are not valid with respect to the feature model

or that include assets to enable requested functionality not described by the current

feature model. The efficient handling of such scenarios is a challenge for typical SPL

consistency checking techniques as they often check all possible products at once

using traditional model checking approaches such as SAT-solvers (e.g., [102, 103, 98]).

This chapter introduces Safe Configuration, an incremental approach to ensure

the consistency of both the product line definition (i.e., feature model and asset

model) and configured products, as depicted in Fig. 4.1. Notice that, in contrast

to other approaches for SPL consistency checking (e.g., [98]), safe configuration can

handle unforeseen product configurations (i.e., it can check whether a product that

does not conform to the product line definition is still working correctly), making it
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both versatile and broadly applicable. Furthermore it is generic and uses model-based

representations of arbitrary assets, making it independent of the technologies used

for product line implementation. Our approach does not only enforce consistency

rules on feature and asset models (denoted as partially surrounding frames), but

also enforces specific sets of consistency rules, which are based on feature and asset

models, on individual products.1 In contrast to other SPL checking approaches, as

we discuss in Section 4.6 in detail, safe configuration checks individual products with

consistency rules that are updated after feature or asset model changes automatically.

This allows safe configuration to flag invalid products and indicate which rules are

inconsistent – also after SPL evolution – making it easier for product line designers

to determine the impact of a change and the effort required for fixing the problem.

The dashed arrows indicate that the applied rules may stem from the features and

assets actually selected or used in a product, or from the feature and asset models

directly. Safe configuration supports evolution of product line definition as well as

product configuration. More concretely it handles changes on the following parts of

SPLs:

1. feature model (∆F) – e.g., addition of new features,

2. asset model (∆A) – e.g., source code refactorings,

3. individual product (∆P) – e.g., selection of a feature,

4. traces (∆T) between features and their implementing assets

Thus, our approach handles changes of all important artifacts in an SPL.

The novel contributions of safe configuration include: i) the checking of individ-

ual, actually configured products with product-specific sets of consistency rules that

1 We use the term consistency rules instead of constraints to indicate that those restrictions
are applied to arbitrary representations rather than typical – for instance, EMF-based – models.
Furthermore, the term constraint is already used in the SPL community, as discussed below.
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combine constraints imposed by both feature model and asset model, and ii) the

efficient handling of evolution in all parts of the product line (i.e., feature model,

asset model, and each configured product).

We developed a prototype implementation that integrates a framework for defin-

ing product lines and products with an incremental consistency checker in order

to demonstrate the feasibility of the approach as well as to assess its performance.

Tests with a large scale product line of a crash management system [104] – a bench-

mark system for the Model-Driven Development (MDD) [1] community available in

the Repository for Model Driven Development (ReMoDD) [105] – which consists of

66 features and 921 associated assets showed that both the evolution of the product

line definition and changes of individual products are handled efficiently and lead to

immediate consistency feedback to the user.

4.1 Motivating Example – Video-on-demand System

We use a small excerpt of a software product line of a video-on-demand system (VOD)

[106] to illustrate the evolution scenarios safe configuration supports. The system

can provide functionality for video playback as well as video recording. Moreover, it

can be configured for execution on either a mobile device or a television. The cor-

responding feature model, using using the notation from [107] and [108], is depicted

in Fig. 4.2(a). We used an inclusive-or-association for modeling the link between

the root feature (VOD) and the features play and record, meaning that at least one

of the two sub-features must be selected. An exclusive-or-association links the

sub-features mobile and TV to the feature play, meaning that exacly one playback

mode has to be selected. If video streams should be recorded, two recording modes

are available: standard-play (sp) for recordings in high-definition and long-play (lp)

for recordings in low-definition. Finally, there is an optional feature GUI that adds

additional user interface functions.
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(a) Feature model (b) Assets that implement features

(c) Products

Figure 4.2: Video-on-demand product line with feature model, assets, and prod-
ucts. Product P2 marked gray

VOD is implemented in Java and consists of three classes for a streaming server,

a video client, and a video itself. The sequence of actions for video playback is as

follows: when a video is selected for playback, the streaming server is notified, the

video is prepared by the streamer, and video playback is started at the requesting

client as soon as the video is available for streaming. For recording, the streamer

informs the client as soon as the video stream is ready for recording. Note that

playback and recording may use videos of different quality, for example to record a

low-definition version of the played video to save disk space. The assets are depicted

in Fig. 4.2(b).

The variation points in the feature model (e.g., the playback mode) are of course

also considered in the implementation. For example, there are two different state-

ments present in the Streamer for preparing the video for playback – one loads a
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high-definition version for TV playback and one loads a low-definition version for

the mobile device that typically has a lower bandwidth connection. As shown in

Fig. 4.2(b), we used in annotations in our example for linking individual variables,

methods, statements, or classes to features (e.g., @play c.play(v) in Streamer.go()).

Indeed, there are dependencies between the different parts of source code. For exam-

ple, the variable Client c in Streamer requires the class Client. Such dependencies

are shown as arrows in Fig. 4.2(b). Obviously, only one of the two video preparing

statements in Streamer.go() can be used at the same time (as indicated by the

crossed arrow connecting the two statements) without getting compilation errors.

In Fig. 4.2(c), three configured products are depicted. Products are defined by the

set of selected features and the assets that implement these features. The features and

assets for P2 are marked gray in 4.2(a) and 4.2(b), respectively. We omit listing the

assets of the products explicitly for readability reasons. Checking the consistency of

a product requires consistency rules inferred from: a) the product’s selected features

based on the feature model, b) the used assets, and c) the feature and asset models

directly. For instance, in P2 the following are examples of these inferred consistency

rules: for a) the selected feature play requires either mobile or TV to be also selected;

for b) the used class Client requires the class Video to be used; and for c) the feature

model’s root feature VOD must be selected (i.e., in feature models the root feature is

always selected). We elaborate more on this issue in Section 4.3.

In contrast with other approaches (e.g., [98, 102]), safe configuration enforces

consistency rules only on configured products (i.e., P1–P3 in Fig. 4.2(c)) and does

not consider products that are possible but not actually in production. Moreover, it

does not enforce all possible rules on a product, but only those rules that are actually

relevant. In our example, this means that the product P2 is only checked with rules

for the choice of play and record (i.e., that at least one of those features is selected),

the alternative of mobile and TV (i.e., that exactly one is selected), and rules for the
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Figure 4.3: Updated assets. Elements used in P2 marked gray

used assets (e.g., that only one video preparation statement is used).

4.1.1 Product Line Evolution Examples

Let us now present some sample product line evolutions that may occur over time.

Refactoring of video playback (∆A).

We begin with a refactoring of the implementation of the VOD system – an evolution

of the asset model (∆A). For example, we could change the class Client and its

method play(Video v), as shown in Fig. 4.3 and introduce a new class Player

with the method play() in order to strenghten the separation of concerns in the

implementation. The method Client.play(Video v) now additionally requires the

method Player.play() and the newly introduced variable Player p, which of course

requires the class Player. After these changes, the previously valid product P2

becomes invalid because it does not include the new asset Player.

Fixing the product line (∆T or ∆P).

For the dangling reference problem introduced above, there are two intuitive fixes:

a) we could add the class Player and its methods as implementation assets for the

feature play (i.e., add annotations) – a change to the defined traces between features

and assets (∆T), and b) we could manually add the missing assets for Player and

Player.play() to the products P2 and P3 without changing the product line defi-

nition (i.e., without linking the asset to features through annotations) and without
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possible effects on other products – a change of a single product (∆P). Since safe

configuration considers both the selected features and the used assets for determining

whether a product is valid, both evolutions (fixes) can be handled: P2 becomes valid

again.

Changing variability (∆F).

Let us consider an evolution of variability. For example, we could change the feature

GUI to be no longer optional but mandatory for all video-on-demand systems – an

evolution of the feature model (∆F). After this evolution, safe configuration would

update the respective sets of applied rules for the existing products P1–P3 and would

detect that all of them become invalid as they do not have the feature GUI selected.

Before we explain in Sections 4.3 and 4.4 how our approach generates rules and

incrementally checks their consistency, let us give a formal definition of product lines.

4.2 Product Line Terminology

We define a single model to hold all the information required for our product line

(PL) definition that consists of three parts: a) feature model (FM), b) asset model

(AM), and c) product model (PM).

PL :“ xFM,AM,PMy (4.1)

4.2.1 Feature Model

The feature model contains a set of features (F) and is used for describing the different

functionality a product can provide at a high level of abstraction [97]. Moreover,

the model contains feature associations (FA) that express how features are related

and how features should be selected during configuration. Though many different

notations for defining feature models and feature associations have been proposed

(e.g., [97, 109, 98, 110, 111, 112]), we follow the standard terminology in literature
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(e.g., [19, 110, 107]) and define the following kinds of feature associations: mandatory,

optional, inclusive-or, and exclusive-or. Next, the model contains additional cross-

tree feature constraints (FC) that express more general relations between features

besides the feature model’s tree-like hierarchical structure. Feature constraints either

require or exclude other features. Finally, one of the existing features is selected as

the models root feature.

FM :“ xF,FA,FC, root P Fy (4.2)

FA :“ txk P KindFA, s P F, t P PpFqyu (4.3)

KindFA :“ tmand, opt, or, xoru (4.4)

FC :“ txk P KindFC, s P F, t P PpFqyu (4.5)

KindFC :“ trequires, excludesu (4.6)

4.2.2 Asset Model

The asset model of the product line includes all the assets (A) that can be used

to implement the features defined in the feature model. These assets are typically

source code files, configuration information or data schemas, image files used by user

interfaces, etc. Moreover, abstractions of code can also be used, for example UML

models, from which source code can be generated, compiled, and delivered. Note

that assets in our asset model are generic and can represent arbitrary artifacts at

any granularity level. For example, an asset can be defined for an entire file or also

for a method defined at a specific position in a source code file. This interpretation

of assets stems from common product line tools and techniques that allow for the

composition of individual methods or even variables in source files or design models

[113, 114].

In contrast to features, assets are not organized hierarchically (i.e., there is no

root asset). However, as there may be dependencies between assets (e.g., method

a calls method b) or also conflicts if certain assets are present in a system at the
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same time (e.g., alternative implementation of a method), thus there may be asset

constraints (AC) that describe such relations (as depicted with solid and crossed

arrows in Fig. 4.2(b)). In our model, we allow the following kinds of asset constraints:

requires, excludes, inclusive-or, exclusive-or.

AM :“ xA,ACy (4.7)

AC :“ txk P KindAC, s P A, t P PpAqyu (4.8)

KindAC :“ trequires, excludes, or, xoru (4.9)

4.2.3 Product Model

Finally, we have to define the product model. This model simply consists of indi-

vidual configurations. Each configuration is identified by two sets, one holding the

selected features and one holding the assets from which the configured product is

composed.

PM :“ txf P PpFq, a P PpAqyu (4.10)

4.2.4 Helper Functions

In order to make data retrieval and the generation of consistency rules easier and

more understandable, we define some additional helper functions.

Feature model.

For feature associations, we can query the corresponding source feature (Eq. (4.11))

or the set of target features (Eq. (4.12)). We overload the functions source and target

to also accept feature constraints as input. Moreover, we want to easily access the

associations (Eq. (4.13)) or constraints (Eq. (4.14)) for which a given feature is the
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source.

source : FAÑ F, xk, s, ty ÞÑ s (4.11)

target : FAÑ PpFq, xk, s, ty ÞÑ t (4.12)

asso : FÑ PpFAq, f ÞÑ tx P FA|sourcepxq “ fu (4.13)

fcon : FÑ PpFCq, f ÞÑ tx P FC|sourcepxq “ fu (4.14)

Asset model.

For the asset model we overload the helper functions source and target to retrieve

source and target assets of asset constraints (see Eq. (4.15) and Eq. 4.16). Moreover,

we define a function to retrieve the asset constraints for which an asset is the source

(Eq. (4.17)). Additionally, we want to retrieve those assets that are implementing a

specific feature (Eq. (4.18)).

source : ACÑ A, xk, s, ty ÞÑ s (4.15)

target : ACÑ PpAq, xk, s, ty ÞÑ t (4.16)

acon : AÑ PpACq, a ÞÑ tx P AC|sourcepxq “ au (4.17)

impl : FÑ PpAq, f ÞÑ tx P A|x implements fu (4.18)

In our running example, this traceability information used in Eq. (4.18) is defined by

the used annotations. However, our approach supports various ways of establishing

this information (e.g., a feature-asset matrix) and is not limited to annotations.

Therefore, we omit an explicit definition of the implementation relation Eq. (4.18).

Product model.

For each product we want to access the selected features (Eq. (4.19)) and the used

assets (Eq. (4.20)) directly.

selected : PMÑ PpFq, xf, ay ÞÑ f (4.19)

uses : PMÑ PpAq, xf, ay ÞÑ a (4.20)
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Next, we show how this product line definition is used for deriving consistency rules.

4.3 Safe Configuration

As we will show next, the approach of safe configuration enables incremental and

efficient consistency checking of evolving product line definitions and configurations.

As we have briefly illustrated in our running example, checking the overall consistency

of a product line involves checking the correctness of: a) the feature model, b) the

asset model, and c) the products. As different parts of the product line evolve, we

want the required consistency rules to be managed and validated incrementally in

order to enable fast and efficient re-validation of both individual products and the

entire product line. Before we consider the aspect of evolution, let us describe in

detail the different kinds of rules that are required.

4.3.1 Feature Model Rules

For the feature model we have to ensure certain syntactical and semantical properties

that have been identified and discussed exhaustively in literature (e.g., [111, 110]),

thus we omit a detailed discussion here. As an example of these rules, features must

be organized hierarchically in a tree and all but the root feature must be linked to

exactly one parent feature. We considered the following rules: i) features (except the

root) must have one parent, ii) features must not require features they also exclude,

iii) features must not require features that exclude them. The feature model in

Fig. 4.2(a) is valid according to those standard rules.

4.3.2 Asset Model Rules

For the asset model, a simple consistency rule to ensure that consistent asset se-

lections are possible is shown in Eq. (4.21). The set of assets that are required by

an asset (derived by getReqA and getReqDirA; shown in Eq. (4.22) and Eq. (4.23),
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respectively) must not include assets that are excluded by one of the required assets

(derived by getExclA; shown in Eq. (4.24)).

validA : AÑ ttrue, falseu,

a ÞÑ getReqApaq X getExclApaq “ H
(4.21)

getReqA : AÑ PpAq,

a ÞÑ tx P A|x P getReqDirApaq _ Dy P getReqDirApaq : x P getReqApyqu
(4.22)

getReqDirA : AÑ PpAq,

a ÞÑ tv P A|Dxx, y, zy P AC : x “ requires^ y “ a^ v P zu
(4.23)

getExclA : AÑ PpAq,

a ÞÑ tv P A|Dw P getReqApaq, xx, y, zy P AC : x “ excludes^ y “ w ^ v P zu
(4.24)

As Eq. (4.25) shows, an asset model is valid if no asset violates the rule defined in

Eq. (4.21)

validAM : AMÑ ttrue, falseu,

xa, acy ÞÑ @x P a : validApxq
(4.25)

The asset model depicted in Fig. 4.2(b) is valid with respect to the defined consistency

rule.

4.3.3 Product Model Rules

The rules we have discussed so far check the consistency of feature and asset models,

that is, they ensure a valid definition of variability and available assets. Now we

discuss the rules required for checking individual products.

We define a rule on a product as a function that relates a product to a boolean

value:

PMÑ ttrue, falseu
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To derive the set of rules needed for a product, both the selected features and

the used assets have to be considered, as shown in Eq. (4.26).

rules : PMÑ tPMÑ ttrue, falseuu,

xf, ay ÞÑ x|@y P f : genRulespyq Ď x^

@z P a : genRulespzq Ď x

(4.26)

For P2 from from Fig. 4.2(c), this would generate rules for the features and assets

marked gray in Fig. 4.2(a) and Fig. 4.2(b), respectively. The rules necessary for a

specific feature include the rules for corresponding feature associations and rules for

corresponding feature constraints, as derived in Eq. (4.27).

genRules : FÑ tPMÑ ttrue, falseuu,

f ÞÑ genRulespassopfqq Y genRulespfconpfqq
(4.27)

For the feature play in our running example, this means that one rule for the

exclusive-or-association is needed. For the set of feature associations, the set of

corresponding rules can easily be calculated, as shown in Eq. (4.28), by generating

one rule for each association.
genRules : PpFAq Ñ tPMÑ ttrue, falseuu,

s ÞÑ tx|Dfa P s : x “ genRulepfaqu
(4.28)

In Eq. (4.29) we define how rules for feature association are derived. Note that the

derived rule uses specific information of the association.

genRule : FAÑ pPMÑ ttrue, falseuq,

xk, s, ty ÞÑ

$

’

&

’

%

xf, ay ÞÑ t Ď f if k “ mand

xf, ay ÞÑ f X t ‰ H if k “ or

xf, ay ÞÑ |f X t| “ 1 if k “ xor

(4.29)

For the inclusive-or-association from VOD, for instance, one rule is derived which

checks that the intersection of selected features and the set tplay, recordu is not

empty (i.e., that at least one of the two features is selected).
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Similar to feature associations, we also derive a single rule for each feature con-

straint, as shown in Eq. (4.30).

genRules : PpFCq Ñ tPMÑ ttrue, falseuu,

s ÞÑ tx|Dfc P s : x “ genRulepfcqu
(4.30)

For feature constraints, the function defined in Eq. (4.31) derives the corresponding

rules.
genRule : FCÑ pPMÑ ttrue, falseuq,

xk, s, ty ÞÑ

#

xf, ay ÞÑ t Ď f if k “ requires

xf, ay ÞÑ f X t “ H if k “ excludes

(4.31)

As with features and feature constraints, we generate one rule for each asset

constraint that is associated with an asset, as shown in Eq. (4.32).

genRules : AÑ tPMÑ ttrue, falseuu,

a ÞÑ tx|Dac P aconpaq : x “ genRulepacqu
(4.32)

The rule derivation for asset constraints is defined in Eq. (4.33).

genRule : ACÑ pPMÑ ttrue, falseuq,

xk, s, ty ÞÑ

$

’

’

’

&

’

’

’

%

xf, ay ÞÑ t Ď a if k “ requires

xf, ay ÞÑ aX t “ H if k “ excludes

xf, ay ÞÑ aX t ‰ H if k “ or

xf, ay ÞÑ |aX t| “ 1 if k “ xor

(4.33)

For example, the asset Client in 4.2(b) has one requires-constraint with target

Video. The resulting rules for Client would thus consist of one rule which checks

that a product’s used assets include the class Video. Note that we overloaded the

functions genRules and genRule to enable generic reuse.

To obtain the consistency status of a specific product with respect to a single rule

we can define the function shown in Eq. (4.34).

resultS : pPM,PMÑ ttrue, falseuq Ñ ttrue, falseu,

pc, rq ÞÑ rpcq
(4.34)
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Moreover, we can define a function that checks consistency for a specific product and

a set of rules as in Eq. (4.35).

result : pPM, tPMÑ ttrue, falseuuq Ñ ttrue, falseu,

pc, rq ÞÑ @x P r : resultSpc, xq
(4.35)

For an individual product consistency can be checked using the function defined in

Eq. (4.36).

check : PMÑ ttrue, falseu,

c ÞÑ resultpc, rulespcqq
(4.36)

Finally, the entire product line is valid and free of errors if the function defined in

Eq. (4.37) returns true.

validPL : PLÑ ttrue, falseu,

xFM,AM,PMy ÞÑ @c P PM : checkpcq
(4.37)

In our running example, P2 is valid while P1 and P3 are invalid.

Note that even with inconsistent feature or asset models, products may be valid

regarding feature selection and asset usage. Moreover, products that are invalid

because of incorrect feature selection may still be working if the asset usage is con-

sistent. To determine whether the asset combination of a product is valid, it is

sufficient to only apply rules that are based on the used assets. To derive these rules,

the function in Eq. (4.38) can be used.

rulesworking : PMÑ tPMÑ ttrue, falseuu,

xf, ay ÞÑ rulespH, aq
(4.38)

And, to check whether a product is working without taking into account the correct-

ness of the feature selection, the function shown in Eq. (4.39) can be used.

working : PMÑ ttrue, falseu,

c ÞÑ resultpc, rulesworkingpcqq
(4.39)
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By substituting Eq. (4.26) by Eq. (4.38) in all functions that will be presented in the

following sections, the validity of products with respect to only asset usage can be

checked.

Next, we discuss how we manage consistency rules and determine the consistency

of products incrementally.

4.4 Incremental Rule Management and Consistency Checking

Above, we have described the generic consistency rules for feature and asset models

as well as functions for generating consistency rules for individual products. Now we

will discuss how our approach handles various kinds of changes to the feature model,

the asset model, or products.

4.4.1 Standard Product Configuration (∆P)

Let us begin with the standard product configuration process as this is the most

common action – an evolution of a single product (∆P) in Fig. 4.1 – and the functions

derived for product configuration will be reused later for other actions.

Selecting a new feature in a product means that the feature is added to the set

of selected features and the assets that implement the feature are added to the set

of used assets. Unselecting a feature in a product means that the unselected feature

is removed from the set of selected features and that all assets that were exclusively

used for implementing the removed feature are removed. Based on this behavior, we

can calculate sets of features and assets that will be added (or removed) through an

(un)selection, as shown in Eq. (4.40) and Eq. (4.41), which we call product deltas.

select∆ : pPM,Fq Ñ PM,

pxf, ay, xq ÞÑ x∆f,∆ay|∆f “ txu^

∆a “ implpxqza

(4.40)
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unselect∆ : pPM,Fq Ñ PM,

pxf, ay, xq ÞÑ x∆f,∆ay|∆f “ txu ^ ∆a “ implpxqz

te|Dy P f, y ‰ x : e P implpyqu

(4.41)

Using these product deltas we can now easily obtain the rules that are required (or

obsolete) after the change has been executed by applying the function from Eq. (4.26).

However, deriving the newly required (or obsolete) rules is not sufficient as the

product change can lead to changed results for other rules. In order to derive the set of

potentially affected rules, we first define the helper function, as shown in Eq. (4.42)

that relates rules to the elements for which they were created (i.e., associations,

feature constraints, or asset constraints).

context : pPMÑ ttrue, falseuq Ñ FAY FCY AC,

x ÞÑ y P FAY FCY AC : x “ genRulepyq
(4.42)

For finding the rules whose consistency results may have changed as consequence of

a product change, we can use the function in Eq. (4.43).

affectedR : pPM,PMq Ñ tPMÑ ttrue, falseuu,

pxf, ay, x∆f,∆ayq ÞÑ tx|x P rulespxf, ayq^

Dy P ∆f Y∆a : y P targetpcontextpxqqu

(4.43)

This function returns all rules for which the context (i.e., the element for which they

were created) is an element that contains an added or removed element in its targets.

That is, the returned set includes all rules that need to be re-evaluated. The results

of unaffected rules can be reused.

For checking the consistency status of an individual product for which a feature

was selected or unselected, we can then use the functions Eq. (4.44) and Eq. (4.45)

with the first parameter being the updated product and the second parameter being
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a product delta:

checkadd : pPM,PMq Ñ ttrue, falseu,

pc, dq ÞÑ resultpc, rulespcqzaffectedRpc, dqq^

resultpc, affectedRpc, dqq ^ resultpc, rulespdqq

(4.44)

checkremove : pPM,PMq Ñ ttrue, falseu,

pc, dq ÞÑ resultpc, rulespcqzpaffectedRpc, dq Y rulespdqqq^

resultpc, affectedRpc, dqq

(4.45)

Note that we did split the formulas into sub-terms. The first part calculates the

result for the unchanged rules, which allows reuse of previously calculated results.

The second part re-validated the rules that already exist but may have a new result,

and (in the case of the addition) the third part derives the newly required rules and

validates them.

Let us illustrate this scenario with an example. If we added the feature TV to

the product P2, the product delta would consist of TV and the asset for the high-

definition video preparation statement in Streamer.go(). The set of affected rules

would contain the excludes constraint from the already used low-definition video

preparation statement. When checking the effect of the feature selection, the existing

excludes-constraint for the low-definition video is violated because of the newly used

high-definition video asset, which in turn excludes the low-definition video. In total,

the new feature selection thus would lead to two violated constraints.

4.4.2 Changing Variability (∆F or ∆A)

Let us now discuss evolution of either the feature of the asset model that changes

the variability of the product line.
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Effects on asset model consistency.

Adding or removing an asset constraint (∆A) may affect the consistency of the asset

model Eq. (4.46) shows how the assets for which the consistency status may be

affected are derived.

affectedA : pAM,ACq Ñ PpAq,

pxa, acy, xq ÞÑ te : e P a^

sourcepxq P getRequiredApeq Y getExcludedApequ

Y tsourcepxqu

(4.46)

The new consistency status after addition/removal of an asset constraint can then

easily be computed using the following function:

validAC : pAM,ACq Ñ ttrue, falseu,

pxa, acy, xq ÞÑ @y P azaffectedApxa, acy, xq : validApyq^

@z P affectedApxa, acy, xq : validApzq

(4.47)

The first part of the expression does not require rule re-validation but reuses existing

results. Only the consistency results for affected assets have to be recomputed.

Effects on feature model consistency.

The effects of adding or removing associations or feature constraints to the feature

model (∆F) are derived in way similar to the addition or removal of asset constraints

and thus are omitted.

Effects on product consistency.

When a new element is added to either the feature associations (∆F), the feature

constraints (∆F), or the asset constraints (∆A), the set of affected products contains

all products that include the new element’s source feature or asset, as defined in
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Eq. (4.48).

affectedPV : pPL,FAY FCY ACq Ñ PpPMq,

pxf, a, cy, xq ÞÑ te|e P c ^ sourcepxq P selectedpeq Y usespequ
(4.48)

The new rule can simply be generated by executing the function defined in Eq. (4.29),

Eq. (4.31), or Eq. (4.33), respectively. For each affected product, only the new rule

has to be validated. To determine the product’s new consistency status, results of

existing rules can be reused. The results of unaffected products can also be reused

when determining the new consistency status of the product line. Eq. (4.49) shows

the corresponding function.

validadd : pPL,FAY FCY ACq,

pxf, a, cy, xq ÞÑ validPLpxf, a, czaffectedPVpxf, a, cy, xqyq^

@y P affectedPVpxf, a, cy, xq : resultpy, rulespyqq^

resultpy, genRulepxqq

(4.49)

When removing a feature association or constraint, the set of affected products is

computed in the same way as with an addition. However, in this case the rule

associated with the removed element can simply be removed and the previously

calculated results for the remaining rules can be used directly for determining the

new consistency status of each product, as shown in Eq. (4.50).

validremove : pPL,FAY FCY ACq,

pxf, a, cy, xq ÞÑ validPLpxf, a, czaffectedPVpxf, a, cy, xqyq^

@y P affectedPVpxf, a, cy, xq : resultpy, rulespyqztgenRulepxquq

(4.50)

For both the addition and the removal of elements, the consistency results for unaf-

fected products can be reused. Moreover, the results of existing rules can be reused

for determining the new consistency status of affected products. In the case of an
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addition, the rule for the new element has to be generated and validated. In the case

of a removal, no validation of rules is required at all.

As an example, let us consider the refactoring of the product line as illustrated

in Section 4.1.1 where new constraints for the class Player and its method play are

introduced (see Fig. 4.3) – an evolution of the asset model (∆A). Applying Eq. (4.48)

returns the affected products P2 and P3 because both use the assets to which the new

constraints are added. To check the validity of all products, the consistency status

of the unaffected product P1 can be reused. For P2 and P3, the existing consistency

results are combined with the results for the rules derived from the added constraints,

which turn out to be inconsistent as both products do not use the newly required

assets.

4.4.3 Changing Traces between Features and Assets (∆T)

Next, we have to consider the case of adding or removing the traces between an as-

set and a feature (∆T) in Fig. 4.1. For example, the assets for the class Player and its

method play are added to the feature play after the refactoring of Client.play(Video

v) in order to make products valid again.

For the addition/removal of an implementing asset to/from a feature, the set of

affected products can be computed with the function defined in Eq. (4.51).

affectedPT : pPL,F,Aq Ñ PpPMq,

pxf, a, cy, x, yq ÞÑ tz|z P c^ x P selectedpzq^

pEv P selectedpzq : v ‰ x ^ y P implpvqqu

(4.51)

The change affects those products which have the changed feature selected and do not

contain other features that also use the added/removed asset. To check consistency,

we reuse the results for the unaffected products and re-validate the affected products

by adding or removing the rules for the asset, as shown in the functions defined in
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Eq. (4.52) and Eq. (4.53).

validadd : pPL,F,Aq Ñ ttrue, falseu,

pxf, a, cy, x, yq ÞÑ validpxf, a, czaffectedPTpxf, a, cy, x, yqyq^

@z P affectedPTpxf, a, cy, x, yq : checkaddpz, xH, tyuyq

(4.52)

validremove : pPL,F,Aq Ñ ttrue, falseu,

pxf, a, cy, x, yq ÞÑ validpxf, a, czaffectedPTpxf, a, cy, x, yqyq^

@z P affectedPTpxf, a, cy, x, yq : checkremovepz, xH, tyuyq

(4.53)

When adding the assets newly introduced in the refactoring described in Section

4.1.1 to the feature play, the affected products according to Eq. (4.51) are P2 and

P3. To re-check the validity of all products, we use Eq. (4.52) where we reuse the

validity status of P1 and re-calculate the status for P2 and P3 with a product delta

that contains the added asset. After adding the two new assets – one at a time – we

find out that this addition fixed P2.

4.4.4 Adding/Removing Individual Assets to/from Products (∆P)

The presented functions Eq. (4.44) and Eq. (4.45) can also be used when adding

or removing assets directly (i.e., not as part of a feature (un)selection) to or from

a product. This action is typically done to quickly fix an invalid product without

changing the product line definition. In this case, the involved assets and an empty

set of features can be used as product delta to determine the effects of the change.

When adding the newly introduced assets from Section 4.1.1 to P2, the effect

can be derived using a product delta with an empty feature set and the two added

assets and the updated product as input for Eq. (4.44). Note that this is the same

product delta already used above when we discussed the effects of adding the assets

to a feature. Thus, the result is also the same and the action fixes the product P2.
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4.4.5 Adding/Removing Assets or Features (∆A or ∆F)

Of course it is also common during evolution of the product line to add and remove

features and assets.

Asset Addition (∆A): When an asset is added to the asset model, products are

not affected until it is linked to other assets through an asset constraint, as discussed

above. It is sufficient to check the validity of the added asset using Eq. (4.21).

Asset Removal (∆A): When an asset is removed, this means that the asset is

removed from all products, affecting consistency as discussed in Section 4.4.4. Addi-

tionally, the asset is removed from all the features it implements and the correspond-

ing asset constraints are removed. Note that these two actions may affect only asset

model consistency as discussed in Section 4.4.2 because the assets where already

removed from all products.

Feature Addition (∆F): Adding a feature does not affect products as a new feature

that is not linked to other features cannot be required or excluded by other features.

When the feature is linked to others through an association or constraint, the affects

have been discussed in Section 4.4.2.

Feature Removal (∆F): The effect of removing a feature from the product line is

equal to an unselection of the feature in all products, which we already discussed.

After unselecting the feature, the association to the feature is removed from the

product line definition, a step that was also discussed above. At this point, the new

consistency status for all affected products is derived and the following removal of

links between the removed feature and the implementing assets is not affecting any

products.
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4.5 Evaluation and Analysis

To validate the feasibility of our approach, we developed a prototype implementation

and employed it for checking a large-scale benchmark software product line.2

4.5.1 Implementation

We implemented the formal product line framework presented in Section 4.2 in Java

using Eclipse Modeling Framework (EMF) [86]. For checking consistency, we also

implemented an incremental consistency checker as well as an incremental rule man-

agement mechanism based on the formalisms presented in Sections 4.3 and 4.4. The

implementation does not employ traditional model checking solutions such as SAT-

or CSP-solvers but relies on straightforward implementations of the presented func-

tions using typical object-oriented techniques. Although we did not formally proof

the correctness of the implementation, the correct behavior was thoroughly tested

with unit-tests for the evolution scenarios presented in this chapter.

4.5.2 Case Study – Crash Management System

To assess the applicability of our approach to product lines of realistic size and com-

plexity, we tested our prototype with one of the few large-scale product lines publicly

available with design models: the Barbados Crash Management System Product Line

[104], available in ReMoDD [105]. The product line defines a crash management soft-

ware system that is modeled using UML diagrams (class- and sequence diagrams,

state machines) and traditional object oriented techniques.

The feature model consists of 66 features and has a total of 35 associations along

with 2 cross-tree feature constraints. The analysis of the feature model with the

FAMA tool [115] revealed a total of 440,640 valid configurations. The models used

in our tests contained 4,236 model elements in total.

2 The prototype is available online at http://www.sea.jku.at/tools/sc
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4.5.3 Experimental Setup

We converted the feature model as well as the software design models into a product

line according to the definitions presented in Section 4.2.

Asset extraction.

For each class, we generated a representing asset. Moreover, we generated an asset for

each property or operation defined in the class. Property or operation assets require

the corresponding class asset. Associations were also mapped to assets that require

the assets of the linked classes. Each sequence diagram of the reference variant was

directly translated to an asset. Each sequence diagram fragment related to features

other than the root was also modeled as an individual asset that requires the sequence

diagram asset when used. Each asset generated for sequence diagrams – or fragments

thereof – also requires the assets associated with the method calls modeled in the

diagram or fragment, respectively. In total, 921 assets were extracted from the

available models. Between those assets, 1360 asset constraints were generated based

on dependencies in the underlying models.

Product construction.

We generated products by selecting all common features (i.e., features that must

be selected in any product) and added more (non-mandatory) features randomly,

meaning that products that may violate constraints based on both the feature and

the asset model. All tests were performed with sets of 1, 10, 50, 100, 250, 500, 750,

and 1,000 concurrently loaded products to test scalability. Each set contained the

fully configured product that included all available features and assets; this product

required 1398 rules to be enforced.
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Figure 4.4: Median times for initializing required rules

4.5.4 Initializing Rules

Our approach requires rules to be initialized on a concrete set of products. Thus, to

be practical, this initialization process should be performed in a reasonable time even

for large numbers of products (i.e., within a few seconds). Hence, we also assessed

the time needed for initializing (i.e., generating and validating) rules for different

sets of products evaluated. The initialization time grows linearly with the number of

products and rules, as depicted in Fig. 4.4; for 1,000 products and a total of 701,867

rule validations, initialization takes less than 3,500 ms.

4.5.5 Performing Changes

The performed changes are based on the scenarios discussed in Section 4.4. For

each test, we measured the overall time required: a) for performing the evolution,

and b) for updating and revalidating affected products and rules. The benchmarks

were run on an Intel Core i5-650 machine with 8GB of memory running Windows

7 Professional. They were executed 100 times and median times were used for our

statistics.
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Figure 4.5: Median times for (un)selecting feature in product (∆P)

Product configuration (∆P).

First, we evaluated the efficiency of changing single product configurations. Features

of a product were unselected and selected again. This test was executed for every

product and all its selected features. However, for the statistics we only considered

(un)selections that actually affected rules and changed the product’s used assets.

The results, depicted in Fig. 4.5, show that the median time for selecting a feature in

a product are below 3 ms, the median times for unselecting a feature are even lower

at about 1 ms as this does not require the application of new rules. Note that the

median processing time for changes that affected more than 250 rules was 15.2 ms

and the maximum required total processing time measured for a feature selection

was 99.0 ms. Moreover, the number of loaded products does not affect the required

processing time significantly.

Association or constraint change (∆F and ∆A).

Next, we evaluated the performance when the feature or asset model changes. First,

each existing association, feature constraint, and asset constraint was removed from

the product line and added again – with different numbers of products loaded at

the time of evolution. We synthesized the results for changes of FA, FC, and AC

because they trigger the same updates (as discussed in Section 4.4.2). As shown
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Figure 4.6: Median times for changing variability (∆F and ∆A) per affected rule

in Fig. 4.6, the median times per affected rule are nearly stable for the addition

of elements between 10 and 1,000 loaded models at 0.045 ms. However, there is

a slight decreases with increasing numbers of loaded products. We suspect that

this is caused by the one-time transformation costs that are required for generating

or deleting rules. Since the costs of finding and checking affected products should

increase linearly with the number of loaded products, those one-time costs reduce the

average costs per affected rule. The faster processing of element removal is caused by

the fact that this case does not require re-validation of rules or the addition of rules

to products. Even when considering only element additions that affected more than

500 products the median total processing time was 16.4 ms and the median time per

affected rule was 0.032 ms. The maximum value observed for the total processing

time was 131.0 ms.

Feature implementation change (∆T).

For the third scenario, we removed and added implementing assets to/from features.

For each feature, we removed and added implementing assets. In Fig. 4.7, the ob-

served median time per affected rule for adding and removing implementing assets

to/from features are depicted. Note that the median time for addition is nearly sta-

ble at 0.06 ms between 250 and 1,000 loaded models, which shows the high efficiency
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Figure 4.7: Median times for changing feature implementing assets (∆T) per af-
fected rule

of our approach. As before, the implementation overhead becomes less important

with growing numbers of loaded products and thus affected products and affected

rules. Analyzing only additions that affected more than 500 products, the median

total processing time is still 39.77 ms with a median time per affected rule of 0.05 ms.

The maximum total processing time observed was 437.9 ms for a change that affected

11,736 rules. The removal of implementing assets is always faster than the addition.

4.5.6 Comparison to SAT-based Checking

To asses the performance benefits of our incremental safe configuration approach, we

compared it to a more traditional SAT-based checking approach. For the compari-

son, we checked the validity of each loaded product individually, using CNF-clauses

equivalent to the rules applied to the product with safe configuration. The total time

required for the translation to CNF and satisfiability-checking was 13 ms for a single

product and reached a stable median value of about 1 ms per product when multi-

ple products were checked. Thus, processing time increased linearly with number of

loaded products as no incremental technique was used to determine which products

where actually affected by a change.

In contrast, processing time with safe configuration does not depend on the num-

ber of products but only on the number of affected rules. When using safe config-
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uration for checking changes that affect 500 or more products (i.e., in more than

500 products at least one rule was affected by the change), the median processing

time is reduced by 96% for association or constraint changes and by 92% for feature

implementation changes compared to SAT-based checking. We did not observe a

single case in which the SAT-based approach was faster than safe configuration.

Note that using a SAT-solver in combination with the incremental updating of

applied rules is also possible. In this case, the actual validation of a product is done

by a SAT-solver and the clauses it uses are updated incrementally based on the

theories presented above. However, this combination – though significantly faster

than non-incremental checking with SAT – in our tests was still slower than the

prototype implementation.

4.5.7 Alternative Implementation

The results discussed above were achieved with a specialized rule management sys-

tem and a consistency checker that were developed specifically for the incremental

checking of SPLs. To highlight that the concepts presented in this chapter are an

application of the principles presented earlier in Chapter 2, however, we also im-

plemented incremental rule management for SPLs using model representations of

SPLs and products and employing the generic transformation engine and consis-

tency checker we already used there. To do this, we had to translate the functions

for constructing rules into transformation rules.

Transformation rules.

Sample transformation rules that generate typical product constraints from a feature

model are shown in Listing 4.1.3 We focused on commonly accepted product con-

straints as described, for example, in [112]. The required product constraints were

3 We use the term product constraints now to indicate that we generate restrictions applied to
EMF-based model elements.
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generated by seven transformation rules.

The first transformation rule, shown in Listing 4.1 (lines 1–7), is executed for all

mandatory associations. Such mandatory associations mean that every target feature

must be selected in a product if the source feature is selected. The second transfor-

mation rule we defined, shown in Listing 4.1 (lines 9–15), is used for or-associations

that require at least one of the target features to be selected in a product if the source

is selected. The third transformation rule for xor-associations, shown in Listing 4.1

(lines 17–23), is similar to the second one. Note that for xor-associations, exactly one

instead of at least one target feature must be selected if the source is selected. The

fourth and the fifth transformation rule are used to handle requires and excludes

cross-tree constraints, as shown in Listing 4.1 (lines 25–31) and Listing 4.1 (lines

33–39), respectively. These two transformation rules are very similar to tMandatory

(Listing 4.1, lines 1–7) and tXor (Listing 4.1, lines 17–23) relations. For tRequires,

only the source element type has was changed to Requires. For tExcludes, the

source element type was changed to Excludes and the size of the result must be

equal to 0.

The sixth transformation rule, shown in Listing 4.1 (lines 41–48), generates prod-

uct constraints for the generic product invariant that a feature (that is not the root

feature) may only be selected in a product if its parent feature is also selected. A

guarding statement is used so that it is only executed for features that actually have

a parent (i.e., all features but the root feature). The seventh transformation rule,

shown in Listing 4.1 (lines 50–56), generates a product constraint that requires the

root feature of the feature model to be selected in a product.

Performance comparison.

In order to compare the efficiency of the specialized implementation discussed above

and the alternative implementation that makes use of more generic technologies, we
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1 rule tMandatory
2 from
3 s : FeatureModel ! Mandatory
4 to
5 t : ConstraintModel ! Constra int (
6 context <́ Product ,
7 inv <́ " s e l f . f e a tu r e s >́i n c l ud e s ("+s . sourceFeature+") imp l i e s s e l f . f e a tu r e s >́

i n c l ud e sA l l ("+s . t a rge tFea tu r e s +")")
8
9 rule tOr

10 from
11 s : FeatureModel ! Or
12 to
13 t : ConstraintModel ! Constra int (
14 context <́ Product ,
15 inv <́ " s e l f . f e a tu r e s >́i n c l ud e s ("+s . sourceFeature+") imp l i e s s e l f . f e a tu r e s >́

s e l e c t ( x|"+ s . t a rge tFea tu r e s+"́ >in c l ud e s ( x ) ) >́s i z e ( ) >0")
16
17 rule tXor
18 from
19 s : FeatureModel ! Xor
20 to
21 t : ConstraintModel ! Constra int (
22 context <́ Product ,
23 inv <́ " s e l f . f e a tu r e s >́i n c l ud e s ("+s . sourceFeature+") imp l i e s s e l f . f e a tu r e s >́

s e l e c t ( x|"+ s . t a rge tFea tu r e s+"́ >in c l ud e s ( x ) ) >́s i z e ( ) =1")
24
25 rule tRequ i re s
26 from
27 s : FeatureModel ! Requires
28 to
29 t : ConstraintModel ! Constra int (
30 context <́ Product ,
31 inv <́ " s e l f . f e a tu r e s >́i n c l ud e s ("+s . sourceFeature+") imp l i e s s e l f . f e a tu r e s >́

i n c l ud e sA l l ("+s . t a rge tFea tu r e s +")")
32
33 rule tExcludes
34 from
35 s : FeatureModel ! Excludes
36 to
37 t : ConstraintModel ! Constra int (
38 context <́ Product ,
39 inv <́ " s e l f . f e a tu r e s >́i n c l ud e s ("+s . sourceFeature+") imp l i e s s e l f . f e a tu r e s >́

s e l e c t ( x|"+ s . t a rge tFea tu r e s+"́ >in c l ud e s ( x ) ) >́s i z e ( ) =0")
40
41 rule tParent
42 from
43 s : FeatureModel ! Feature (
44 s . parent<>nu l l )
45 to
46 t : ConstraintModel ! Constra int (
47 context <́ Product ,
48 inv <́ " s e l f . f e a tu r e s >́i n c l ud e s ("+s+") imp l i e s s e l f . f e a tu r e s >́i n c l ud e s ("+s .

parent+")")
49
50 rule tRoot
51 from
52 s : FeatureModel ! FeatureModel
53 to
54 t : ConstraintModel ! Constra int (
55 context <́ Product ,
56 inv <́ " s e l f . f e a tu r e s >́i n c l ud e s ("+s . root+")")

Listing 4.1: Transformation rules for product lines
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(a) Processing times for addition

(b) Processing times for removal

Figure 4.8: Processing times for changing variability (∆F and ∆A) of single product

conducted a test similar to the one discussed in Section 4.5.5, in which we performed

changes in the variability of the SPL (i.e., we removed and added each association

and feature constraint). For this test, we used the traditional transformation rules

and observed the processing times required when only a single product was loaded.

By using the transformation engine and the consistency checker employed already

in Chapter 2, it was possible to distinguish between transformation and validation

performance. For the test, we used products that were composed of randomly selected

features. The used products included the empty product (i.e., zero features selected)

and the fully configured product (i.e., all 66 features selected). The results for this

test are shown in Fig. 4.8. For the addition of a new association or feature constraint,

Fig. 4.8(a) shows that the total time for processing in all test executions stayed below
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5 ms. Note that the time required for the transformation (i.e., the creation of the

required rule) remains nearly unchanged at under 1 ms. However, the time for

validation increases linearly with the number of features selected in the product.

This is caused by the different nature of applied rules. In the previous tests, the

rules were validated only if they were actually relevant for a product. In this test,

on the other hand, each rule was always applied to the product and the result of

the validation was set to consistent if the rule was actually not applicable (note

the "implies" construct used in Listing 4.1). Although this overhead increased the

median overall processing time for a change from about 0.12 ms (see Fig. 4.6) to a

value between 1 ms and 5 ms depending on product configuration, the processing is

still fast and can be done live in a tool.4

For the removal of associations or cross-tree constraints from the feature model,

Fig. 4.8(b) shows that the total processing time stays under 1 ms for all performed

changes. Again, note the constant time of about 0.1 ms required for the transfor-

mation (i.e., removal of the existing rules that become obsolete after the change).

Because there is no actual validation required for the removal of rules, the slope of the

line indicating the validation is less than for the addition. However, the slope is still

positive because the consistency checker must discard data that was captured during

previous validation of the removed rules and the amount of that data correlates with

the number of selected features.

Overall, the test results demonstrate that the employed transformation and con-

sistency checking technologies can affect performance significantly. However, ob-

served results also increase confidence in the general applicability of the principles

presented in Chapter 2.

4 Note that this is a valid comparison because the total processing times shown in Fig. 4.6 for a
single loaded product are based solely on changes that affected only a single rule.
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4.5.8 Threats to Validity

Though the validation results are quite promising, there are possible threats to va-

lidity we have to discuss. First, our case study is based on a single product line

only. While this means that our results may not be representative for all prod-

uct lines used in practice, the results still indicate that our approach performs well

at least with product lines of similar characteristics. The SPL used for the case

study was developed by experts in the field of MDE and is commonly used as a

benchmark SPL. Moreover, it provides similar characteristics to other product lines

typically used for validation purposes from the Software Product Lines Online Tools

(SPLOT) repository [116]. The feature models available in SPLOT have an average

size of 25 features, whereas our case study SPL includes 66 features. Additionally,

our sample SPL (including the asset model) is rather complex with a constraints-to-

model-elements ratio of 1.38 (i.e., for each feature or asset, there are 1.38 constraints

present). Therefore, we are confident that the case study results are representative

for a large number of industrial product lines.

Another aspect of our case study that might be challenged is the way we extracted

assets and asset constraints. Indeed, it would have been possible to increase the

number of assets by loading not only top-level model elements (e.g., classes) but also

generating assets for low-level information (e.g., generate an asset for each reference

cardinality). However, we chose to rely on top-level elements for asset generation

because those elements are typically linked to other model elements whereas low-

level model elements are not referenced by elements other than their parent top-level

element. Note that by including additional assets and asset constraints for low-

level model elements, the total number of constraints would increase significantly.

However, because of the incremental nature of our approach, such an increase in

asset model size would have only a minimal impact on processing times compared
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to other approaches that rely on batch validation and where each additional asset

constraint increases validation effort inevitably.

4.6 Related Work

Product lines and consistency checking are active fields of research and various ap-

proaches for checking the consistency of product lines have been proposed. In this

section we discuss those closest to our work.

One of the approaches most relevant to ours is Safe Composition [98]. Safe com-

position would typically infer all possible consistency rules and check whether all

products that can be configured for a given feature model are valid with respect to

the asset model (i.e., that all products are working) [117]. This means that the ap-

proach cannot be used when configured products are intentionally not conforming to

the feature model because of unexpected customer requirements. Furthermore, safe

composition is not designed for evolving product lines and thus not supports incre-

mental updates of consistency results after evolution. The strength of our approach

is indeed the flexibility it gives product line designers when evolving the product line

or configuring products. Moreover, there are known issues with safe composition as

the number of possible products can grow exponentially [118]. Our approach avoids

these problems by considering only existing products. While this does not guarantee

safety for all possible products, it reduces scalability issues and enables checking of

products that are not valid with respect to the feature model.

One of biggest differences between safe configuration and approaches such as

[102, 103, 98, 119, 120, 111, 121] is that it does not use traditional model-checking

techniques such as SAT-solvers or propositional formulas for finding inconsistencies

but determines consistency results for individual products by applying specific sets

of rules incrementally.

Shi et al. [119] use feature models and implementation information to build a
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feature dependency graph and a control flow graph. Those are combined to an in-

teraction tree which is used as basis for reasoning about product line consistency.

Classen et al. [121] use feature transition systems and computation tree logic for

finding inconsistencies through symbolic model checking. Cordy et al. [120] inves-

tigate the effects of product line evolution. Based on feature transition systems,

different categories of features, and behavioral analysis they determine which prod-

ucts have to be model checked after feature model evolution. Our approach uses a

unified mechanism for determining effects of changes regardless of the kind of fea-

ture, asset, association, or constraint involved. Sabouri et al. [122] proposed an

approach for handling the evolution of feature models. They use state-spaces for

possible products and support the reuse of consistency results for the existing state

space when checking the consistency of the evolved product line using a Spin model

checker. The mentioned approaches rely on model checkers to find inconsistencies

in affected products after evolution. Safe configuration, on the other hand, changes

the set of rules that are enforced on individual products incrementally as the prod-

uct line evolves, allowing for quick and efficient validation of only affected products

without using heavyweight model checking techniques. However, our work focuses

on checking strucutural properties while the approaches above focus on behavioral

properties, thus we do not replace model checking for product lines but present an

efficient alternative for checking their structural integrity (e.g., for checking whether

a configured product does compile).

State machines and product deltas are also used by Lochau et al. [123] for manag-

ing test suites for product line regression testing. They use these deltas to determine

which test cases become required or obsolete as the consequence of evolution. In

safe configuration, such test cases can be modeled as assets and can be linked to

features and other assets which they check, thus our approach can also be used for

this purpose.
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4.7 Summary

In this chapter, we presented the formal foundation for safe configuration, an incre-

mental approach for checking consistency of evolving product lines that is based on

the concepts of CDM. The approach is generic and handles evolution of the feature

model, the asset model, and of individual products. This provides more flexibility to

product line designers as the approach validates arbitrary configured products. We

demonstrated its feasibility by developing a prototype implementation and showed

its efficiency and scalability in realistic evolution scenarios of a large-scale SPL. The

validation results show that the approach scales and performs well even when a large

number of products is affected by evolution; the worst time for a single evolution was

under 500 ms for a change that affected 1,000 products and required the generation

and validation of 11,736 rules.

The approach of safe configuration illustrates that automatic consistency rule

generation and management is a concept applicable to SPLs.
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5

Discussion and Conclusion

In the previous chapters, we have introduced the concepts of constraint generation

and illustrated how the approach can address various issues in software engineering.

In this chapter, we discuss how the data presented relates to the research questions

defined in Chapter 1. We also briefly discuss possible future work.

5.1 RQ1: Feasibility

The feasibility of incremental constraint generation and management has been dis-

cussed both theoretically and practically in Chapter 2. In that chapter, we have illus-

trated how existing technology can be employed to realize an incremental constraint

management framework. Using typical MDE-scenarios, we demonstrated by example

that knowledge available from existing models is sufficient for generating meaningful

model constraints that enable further consistency checking and inconsistency fixing

technologies. In Chapter 3, we applied the principles of CDM to metamodeling and

generated important structural constraints that were managed automatically during

metamodel evolution – another example where existing knowledge was used as pri-

mary basis for generating constraints. Overall, both chapters clearly demonstrate
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that the proposed solution of incremental constraint management is feasible.

5.2 RQ2: Incrementality and Performance

The performance of our approach was demonstrated in different realistic case studies.

For typical MDE-scenarios, the case study presented in Chapter 2 showed that the

incremental constraint-generating transformation can be performed within millisec-

onds. Moreover, the case study revealed that there are consistency checkers already

available that perform the validation of updated constraints also within milliseconds.

Since the total processing time for both transformation and validation stayed clearly

below 1,000 ms for all performed changes, we concluded that CDM in general can

be applied without interrupting modeling tool users.

The case study conducted in Chapter 3 supports this conclucions. The results

in that case study showed that both the transformation and the validation time per

validated model element were nearly constant for different model sizes. Moreover, the

total processing time did not exceed 1,000 ms for more than 99.9% of the metamodel

changes. Therefore, we conclude that our approach scales and does not interrupt

tool users even for large change impacts.

Overall, the case study results provide evidence that in realistic scenarios our

approach scales and does not impose serious performance penalties.

5.3 RQ3: Different MDE Issues Addressed

In Chapter 2 we discussed that CDM can be used to effectively address issues that

arise with the use of model transformations in some specific scenarios that involve

uncertainties and in which multiple possible solutions are possible for a modeling

problem. In particular, we have used constraint management to address the MDE

issues of: i) ambiguity in transformations, ii) rule scheduling, iii) model merging, iv)

concurrent modifications in synchronized models.

128



In Chapter 3, we showed how the approach addresses the issue of evolving lan-

guages and metamodels and co-evolving model constraints that are based on them.

In addition to those typical MDE issues, we have also applied CDM in the domain

of software product lines in Chapter 4. Specifically, we showed how incremental rule

generation can be used to realize instant consistency checking of existing products

when product variability is changed.

5.4 RQ4: General Applicability

Note that we not only applied CDM to three rather different domains in total (i.e.,

model transformations, metamodeling, and SPLs), but that we also used three differ-

ent approaches for realizing the core concepts (i.e., traditional model transformations,

constraint templates, and mathematic functions). This demonstrates the general ap-

plicability and shows that the concepts are generic enough to be applied in different

ways.

5.5 Future Work

Though the research presented in this thesis clearly showed that constraint genera-

tion is feasible and useful in various domains, we believe there are still many other

domains to which our approach can be applied. For instance, CDM may be used

to determine constraints imposed on self-adaptive systems. By using sophisticated

fixing technologies, systems may then be reconfigured based on detected inconsis-

tencies. We plan to further investigate the usability of CDM and to integrate such

approaches for automatic inconsistency fixing in our prototypes. Moreover, we plan

to do further research on finding contradictory constraints – or even prevent that

such constraints can be generated – and the effects of CDM when used with bidi-

rectional transformations. For our templates, we want to add support for partial

re-instantation to increase efficiency even further. Regarding incremental safe con-
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figuration, we want to expand our prototype to support more specialized product

line concepts that include, for example, feature groups.

5.6 Conclusion

In this thesis, we have outlined the possibilities of incremental constraint generation

in different software engineering domains – namely in model transformation, meta-

modeling, and software product lines. We have discussed the various MDE issues

such an approach can address and provided different implementations that were em-

ployed for conducting realistic case studies, proving the feasibility of the approach.

In general, our approach provides additional guidance for modelers by enforcing not

only generic but also automatically managed, domain-specific constraints that detect

an increased variety of inconsistencies during all phases of MDE-oriented software

processes and for arbitrary models. The different case studies not only demonstrated

general applicability, but the obtained performance results also suggested that our

approach scales in real-world scenarios. The approach was thoroughly compared to

related technologies and we found that it should be seen as complementary approach

that is capable of bridging gaps between existing MDE approaches. For future work,

we have identified several fields to which incremental constraint generation and man-

agement can be applied.
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